Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 70, nr 2 | 643--659
Tytuł artykułu

The risk of additional branch works in the construction of railway projects

Treść / Zawartość
Warianty tytułu
PL
Ryzyko dodatkowych prac branżowych przy budowie inwestycji kolejowych
Języki publikacji
EN
Abstrakty
EN
Every decision or action taken as part of a construction project involves risk. Unforeseen branch works that may occur during the construction investment are the so-called additional work. They cause risk, both for the contractor and the investor. Skilful management of this risk may lead to minimizing the change in the investment duration or minimizing the change in the cost of the contractual amount. The work proposes a method of analysing the risk of industrial works that may occur during additional works in railway construction investments. A constructed Bayesian network based on the risk component of industrial works was used for the analysis. Bayesian networks are listed as one of the 31 techniques suggested for risk analysis in accordance with the ISO 31010 standard, which enables the correct analysis of the examined problem with satisfactory accuracy. During the construction of the network, historical data was obtained from completed and settled railway infrastructure construction projects, and 125 unique records corresponding to additional works were identified. The created Bayesian network combines technological aspects resulting from the specificity of the implementation of branch works in railway construction projects with a practical assessment of their risk. The proposed network model allows for risk analysis by defining various event scenarios, and has high application capacity resulting from the ease of applying its results in practice in the implementation of railway investments.
PL
Elementy infrastruktury kolejowej mogą zostać zakwalifikowane do kilkunastu różnych kategorii, a o ich finalnym sklasyfikowaniu decyduje projektant odpowiadający za sporządzenie dokumentacji technicznej. Wobec dużej różnorodności podejść projektantów stosuje się w praktyce podział robót budowlanych ze względu na branże, odpowiadające zakresom prac. Podział robót budowlanych na branże oraz zrozumienie charakterystyk prac branżowych może poprawić opis powszechnych zjawisk pojawiających się podczas realizacji przedsięwzięcia budowlanego. Jednym z przykładów podziału prac wydają się być roboty dodatkowe, które w przedsięwzięciach budowlanych są zjawiskiem powszechnym, występującym w trakcie realizacji wielu rodzajów obiektów budowlanych. Charakter tych prac, ich częstość występowania, a także skutki zależą od specyfiki oraz otoczenia inwestycji. Sposób opisu ryzyka został rozwinięty przez autorów pracy we wcześniejszych publikacjach poprzez zastosowanie sieci bayesowskich, a także stworzeniu komponentu zarządzania ryzykiem wg normy PN-EN ISO 31000:2018. Opracowany model dał satysfakcjonujące wyniki i pozwolił na stosowanie metody w praktyce. W niniejszym artykule zaprezentowano sposób tworzenia nowego fragmentu sieci, zawierającego charakterystykę robót branżowych w robotach dodatkowych, powstających podczas trwania przedsięwzięć budowy infrastruktury kolejowej w Polsce. Do budowy rozszerzenia sieci bazowej zostaną wykorzystane dane historyczne, pochodzące z zakończonych inwestycji kolejowych.
Wydawca

Rocznik
Strony
643--659
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
  • Auburn University, College of Engineering, Department of Civil and Environmental Engineering, Auburn, USA, jrueda@auburn.edu
Bibliografia
  • [1] Resolution no. 249/2022 of The Council of Ministers of 13 December 2022 amending the resolution on establishing the National Railway Program until 2023.
  • [2] Act of 28 March 2003 on Rail Transport, Journal of Laws of the Republic of Poland, 2003, No. 86, item 789.
  • [3] Act of 7 July 1994 on Construction Law, Journal of Laws of the Republic of Poland 1994 No. 89 item 414 as amended.
  • [4] Regulation of the Minister of Investment and Development of 29 April 2019 on professional preparation to perform independent technical functions in the construction industry.
  • [5] A. Leśniak and F. Janowiec, “Analysis of additional works in completed railway construction projects”, Scientific Review – Engineering and Environmental Sciences, vol. 28, no. 3, pp. 366-376, 2019, doi: 10.22630/PNIKS.2019.28.3.34.
  • [6] A. Leśniak and F. Janowiec, “Risk assessment of additional works in railway construction investments using the Bayes network”, Sustainability, vol. 11, no. 19, art. no. 5388, 2019, doi: 10.3390/su11195388.
  • [7] M. Lendo-Siwicka, K. Pawluk, P. Żerek, and R. Trach, “The settlements of the changes introduced on the infrastructure investment contract based on the FIDIC contract conditions – case study”, Scientific Review – Engineering and Environmental Sciences, vol. 27, no. 3, pp. 387-398, 2018, doi: 10.22630/PNIKS.2018.27.3.38.
  • [8] I. Skrzypczak and J. Zięba, “Risk analysis in quality assessment of ready-mixed concrete using fuzzy logic”, Cement Lime Concrete, vol. 28, no. 1, pp. 26-39, 2023, doi: 10.32047/CWB.2023.28.1.3.
  • [9] D. Wieczorek and K. Zima, “Analysis of the selection of materials for road construction taking into account the carbon footprint and construction costs”, Archives of Civil Engineering, vol. 68, no. 3, pp. 199-219 , 2022, doi: 10.24425/ace.2022.141881.
  • [10] E. Plebankiewicz, A. Leśniak, E. Vitkova, and V. Hromadka, “Models for estimating costs of public buildings maintaining-review and assessment”, Archives of Civil Engineering, vol. 68, no. 1, pp. 335-351, 2022, doi: 10.24425/ace.2022.140171.
  • [11] O.A. Sunday, “Impact of variation orders on public construction projects”, in: Proceedings 26th Annual ARCOM Conference, 6-8 September 2010, Leeds, UK, C. Egbu, Ed. Association of Researchers in Construction Management, 2010, pp. 101-110.
  • [12] N. Othman, “Management of variations in construction contracts. Management of variations in construction contracts”, in: 13th Annual ARCOM Conference, 15-17 September 1997, King’s College, Cambridge, vol. 1, P. Stephenson, Ed. Association of Researchers in Construction Management, 1997, pp. 380-388.
  • [13] P. Keane, B. Sertyesilisik, and A. D. Ross, “Variations and change orders on construction projects”, Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, vol. 2, no. 2, pp. 89-96, 2010, doi: 10.1061/(ASCE)LA.1943-4170.0000016.
  • [14] PN-ISO 31000:2018 Risk Management – Principles.
  • [15] J.A. Rueda-Benavides and D.D. Gransberg, “Effective risk management strategies in construction and maintenance indefinitely delivery/indefinitely quantity contracts”, in Transportation Research Board 95th Annual Meeting, 10-14 January 2016, Washington DC, United States. 2016, pp. 16-62.
  • [16] M.H. Faber and M.G. Stewart, “Risk assessment for civil engineering facilities: critical overview and discussion”, Reliability Engineering & System Safety, vol. 80, no. 2, pp. 173-184, 2003, doi: 10.1016/S0951-8320(03)00027-9.
  • [17] Project Management Institute, A Guide to the project management body of knowledge. An American National Standard ANSI/PMI 99-001-2008, 4th ed. Atlanta: Project Management Institute, 2008.
  • [18] R.R. Moeller, COSO enterprise risk management: understanding the new integrated ERM framework. Hoboken, New Jersey: John Wiley & Sons, 2007.
  • [19] U.R. de Oliveira, F.A.S. Marins, H.M. Rocha, and V.A.P. Salomon, “The ISO 31000 standard in supply chain risk management”, Journal of Cleaner Production, vol. 151, pp. 616-633, 2017, doi: 10.1016/j.jclepro.2017.03.054.
  • [20] A.V. Thomas, S.N. Kalidindi, and L.S. Ganesh, “Modelling and assessment of critical risks in BOT road projects”, Construction Management and Economics, vol. 24, no. 4. pp. 407-424, 2006, doi: 10.1080/01446190500435275.
  • [21] J. Kowalski and M. Lendo-Siwicka, “Matrix of risk factors for railway construction projects”, Acta Scientiarum Polonorum Architectura, vol. 20, no. 3, pp. 55-61, 2021, doi: 10.22630/aspa.2021.20.3.26.
  • [22] ISO/IEC 31010:2009 Risk management – Risk assessment techniques.
  • [23] A. Lesniak, G. Piskorz, M. Spisakova, and D. Mackova, “Causes of delays in construction works resulting from the provisions of the contract in Poland and Slovakia”, Scientific Review – Engineering and Environmental, vol. 27, no. 1, pp. 71-87, 2018, doi: 10.22630/PNIKS.2018.27.1.7.
  • [24] M. Kycko, “Zagrożenia i ryzyka w procesach certyfikacji”, Przegląd Komunikacyjny, vol. 6, pp. 36-39, 2016.
  • [25] K. Zboiński, P. Woźnica, and Y.V. Bolzhelarskyi, “Modelling of the shape of railway transition curves from the point of view of passenger comfort”, Archives of Transport, vol. 60, no. 4, pp. 205-217, 2021, doi: 10.5604/01.3001.0015.6931.
  • [26] P. Gołębiowski and J. Kukulski, “Preliminary study of shaping the railway track geometry in terms of their maintenance costs and capacity”, Archives of Transport, vol. 53, no. 1, pp. 115-128, 2020, doi: 10.5604/01.3001.0014.1787.
  • [27] Risk Matrix for Design & Build Projectcs, Forum Inwestycyjne PKP PLK S.A., Warsaw, 26.01.2021.
  • [28] P. Weber, G. Medina-Oliva, C. Simon, and B. Iung, “Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas”, Engineering Applications of Artificial Intelligence, vol. 25, no. 4, pp. 671-682, 2012, doi: 10.1016/j.engappai.2010.06.002.
  • [29] A. Leśniak and F. Janowiec, ”Application of the Bayesian networks in construction engineering”, Civil and Environmental Engineering Reports, vol. 30, no. 2, pp. 221-233, 2020, doi: 10.2478/ceer-2020-0028.
  • [30] T. Bayes, “LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S.”, Philosophical Transactions of the Royal Society of London, vol. 53, pp. 370-418, 1763.
  • [31] C. Duval, G. Fallet-Fidry, B. Iung, P. Weber, and E. Levrat, “A Bayesian network-based integrated risk analysis approach for industrial systems: application to heat sink system and prospects development”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, vol. 226, no. 5, pp. 488-507, 2012, doi: 10.1177/1748006X12451091.
  • [32] L. Zhang, X. Wu, M.J. Skibniewski, J. Zhong, and Y. Lu, “Bayesian-network-based safety risk analysis in construction projects”, Reliability Engineering & System Safety, vol. 131, pp. 29-39, 2014, doi: 10.1016/j.ress.2014.06.006.
  • [33] M. Apollo, B. Grzyl, and E. Miszewska-Urbańska, “Application of BN in risk diagnostics arising from the degree of urban regeneration area degradation”, in 2017 Baltic Geodetic Congress (BGC Geomatics). IEEE, 2017, pp. 83-88.
  • [34] D. Straub and D. Der Kiureghian, “Bayesian network enhanced with structural reliability methods: methodology”, Journal of Engineering Mechanics, vol. 136, no. 10, pp. 1248-1258, 2010, doi: 10.1061/(ASCE)EM.1943-7889.0000173.
  • [35] D.J. Delgado-Hernández, O. Morales-Nápoles, D. De-León-Escobedo, and J.C. Arteaga-Arcos, ”A continuous Bayesian network for earth dams’ risk assessment: an application”, Structure and Infrastructure Engineering, vol. 10, no. 2, pp. 225-238, 2014, doi: 10.1080/15732479.2012.731416.
  • [36] N. Fenton and M. Neil, Risk assessment and decision analysis with Bayesian networks. New York, Boca Raton: CRC Press, 2018, doi: 10.1201/b21982.
  • [37] U.B. Kjaerulff and A.L. Madsen, Bayesian networks and influence diagrams: A guide to construction and analysis. New York: Springer, 2012, doi: 10.1007/978-1-4614-5104-4.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-de15f688-2bdf-481a-bf7b-3d7b73b193af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.