Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 33, No. 1 | 59--72
Tytuł artykułu

Green synthesis and characterization of Ag1/2Al1/2TiO3 nanoceramics

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single phase silver aluminum titanate (Ag1/2Al1/2)TiO3, later called AAT, nanoceramic powder (particle size 2 to 7.5 nm) was synthesized by a low-cost, green and reproducible tartaric acid gel process. X-ray, FT-IR, energy dispersive X-ray and high resolution transmission electron microscopy analyses were performed to ascertain the formation of AAT nanoceramics. X-ray diffraction data analysis indicated the formation of monoclinic structure having the space group P2/m(10). UV-Vis study revealed the surface plasmon resonance at 296 nm. Dielectric study revealed that AAT nanoceramics could be a suitable candidate for capacitor applications and meets the specifications for “Z7R” of Class I dielectrics of Electronic Industries Association. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were performed using the impedance data. Electric modulus studies supported the hopping type of conduction in AAT. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in AAT. The ac conductivity data were used to evaluate the density of states at Fermi level and minimum hopping length of the compound.
Wydawca

Rocznik
Strony
59--72
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • University Department of Chemistry, T.M. Bhagalpur University, Bhagalpur 812 007, India
autor
  • University Department of Chemistry, T.M. Bhagalpur University, Bhagalpur 812 007, India
  • Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800 001, India
autor
  • Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna 800 001, India, k.prasad65@gmail.com
  • University Department of Physics, T.M. Bhagalpur University, Bhagalpur 812 007, India
Bibliografia
  • [1] EICHEL R.-A., KUNGL H., Funct. Mater. Lett., 3 (2010), 1.
  • [2] DAMJANOVIC D., KLEIN N., LI J., POROKHONSKYY V., Funct. Mater. Lett., 3 (2010), 5.
  • [3] LEONTSEV S.O., EITEL R.E., Sci. Technol. Adv. Mater., 11 (2010), 044302.
  • [4] R¨O DEL J., JO W., SEIFERT K.T.P., ANTON E.-M., GRANZOW T., DAMJANOVIC D., J. Am. Ceram. Soc., 92 (2009), 1153.
  • [5] SHROUT T.R., ZHANG S.J., J. Electroceram., 19 (2007), 111.
  • [6] TAKENAKA T., NAGATA H., J. Eur. Ceram. Soc., 25 (2005), 2693.
  • [7] CROSS L.E., Nature, 432 (2004), 24.
  • [8] SMOLENSKII G.A., ISUPOV V.A., AGRANOVSKAYA A.I., KRAINIK N.N., Sov. Phys. Solid State, 2 (1961), 2651.
  • [9] PRASAD K., KUMARI K., LILY, CHANDRA K.P., YADAV K.L., SEN S., Adv. Appl. Ceram., 106 (2007), 241.
  • [10] HIRUMA Y., NAGATA H., TAKENAKA T., J. Appl. Phys., 105 (2009), 084112.
  • [11] INAGUMA Y., KATSUMATA T., WANG R., KOBASHI K., ITOH M., SHAN Y.-J., NAKAMURA T., Ferroelectrics, 264 (2001), 127.
  • [12] PARK J.-H., WOODWARD P.M., PARISE J.B., REEDER R.J., LUBOMIRSKY I., STAFSUDD O., Chem. Mater., 11 (1999), 177.
  • [13] KUMAR S., SAHAY L.K., JHA A.K., PRASAD K., Adv. Mater. Lett., 5 (2014), 67.
  • [14] KUMAR S., SAHAY L.K., JHA A.K., PRASAD K., Adv. Nano Res., 1 (2013), 211.
  • [15] RAEVSKII I.P., REZNICHENKO L.A., MALITSKAYA M.A., Tech. Phys. Lett., 26 (2000), 93.
  • [16] LIAO Y., XIAO D., LIN D., Appl. Phys. A-Mater. Sci. Process., 90 (2008), 165.
  • [17] WU L., XIAO D., ZHOU F., TENG Y., LI Y., J. Alloy. Compd., 509 (2011), 466.
  • [18] LU Y., LI Y., WANG D., YIN Q., Ferroelectrics, 358 (2007), 109.
  • [19] LU Y., LI Y., WANG D., WANG T., YIN Q., J. Electroceram., 21 (2008), 309.
  • [20] TANG X.-G., WANG J., WANG X.-X., CHAN H.L.- W., Chem. Mater., 16 (2004), 5293.
  • [21] MAEDA T., TAKIGUCHI N., ISHIKAWA M., HEMSEL T., MORITA T., Mater. Lett., 64 (2010), 125.
  • [22] LENCKA M.M., OLEDZKA M., RIMAN R.E., Chem. Mater., 12 (2000), 1323.
  • [23] JHA A.K., PRASAD K., Colloid. Surface. B, 75 (2010), 330.
  • [24] JHA A.K., PRASAD K., Integr. Ferroelectr., 117 (2010), 49.
  • [25] CHEN W., KUME S., WATARI K., Mater. Lett., 59 (2005), 3238.
  • [26] SEN S., SAHU P., PRASAD K., Mater. Sci.-Poland, 28 (2010), 265.
  • [27] HAO J., WANG X., CHEN R., LI L., Mater. Chem. Phys., 90 (2005), 282.
  • [28] XU Q., CHEN S., CHEN W., HUANG D., ZHOU J., SUN H., LI Y., J. Mater. Sci., 41 (2006), 6146.
  • [29] XU Q., CHEN X., CHEN W., CHEN S., KIM B., LEE J., Mater. Lett., 59 (2005), 2437.
  • [30] KOCHERGINA L.A., VOLKOV A.V., KRUTOV D.V., KRUTOVA O.N., Russ. J. Phys. Chem. A, 80 (2006), 899.
  • [31] BATES R.G., CANHAM R.G., J. Res. Natl. Bur. Stand., 47 (1951), 343.
  • [32] BOUKAMP B.A., Solid State Ionics, 169 (2004), 65.
  • [33] KR¨O GER F.A., VINK H.J., Solid State Phys., 3 (1956), 307.
  • [34] ELLIOTT S.R., Philos. Mag. B, 37 (1978), 553.
  • [35] FUNKE K., Prog. Solid State Chem., 22 (1993), 111.
  • [36] SHARMA G.D., ROY M., ROY M.S., Mater. Sci. Eng. B, 104 (2003), 15.
  • [37] NADEEM M., AKHTAR M.J., KHAN A.Y., SHAHEEN R., HAQUE M.N., Chem. Phys. Lett. 366 (2002), 433.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ddaa6e0f-47d8-4770-9422-f0164980cb62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.