Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, nr 2(72) | 5--18
Tytuł artykułu

Effects of B addition on the microstructure and microhardness of melt-spun Al-7075 alloy

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Main aim of this study is to examine change of microstructural and the mechanical properties of Al-7075 alloy depending on B content added with different proportions. Rapid solidification process used to produce the alloys was carried out with a single roll melt spinner via a wheel with a rotational speed of 25 m/s. For the microstructural characterization of the alloys, a scanning electron microscope and X-ray diffraction analyzes were used. According to obtained results, it can be said that B addition led to modification of dimensions and shapes of both α−Al and intermetallic phases occurred, it reduced average grain size from 0.45 μm to 0.34 μm in the microstructure. The B addition also led to dramatically increase in microhardness of the Al-7075 alloy. The microhardness of the alloy with 0.4 wt. % B is 0.19 GPa, this is clearly one times higher than that of the alloy without B addition. The microhardness of the alloy with 1 wt. % B is 0.21 GPa, this is also slightly higher than that of the alloy with 0.4 wt. % B.
Wydawca

Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • Department of Fundamental Sciences and Engineering, Sivas University of Science and Technology, 58000, Sivas, Turkey, fatihkilicaslan@sivas.edu.tr
  • Department of Materials Science and Engineering, Kastamonu University, 37000, Kastamonu, Turkey
  • Department of Aeronautical Engineering, Sivas University of Science and Technology, 58000, Sivas, Turkey
  • Department of Mechanical Engineering, Kastamonu University, 37000, Kastamonu, Turkey
Bibliografia
  • 1. A. Azarniya, A.K. Taheri, K.K. Taheri, Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloys Compd. 781 (2019) 945–983. https://doi.org/10.1016/j.jallcom.2018.11.286.
  • 2. A. Azarniya, H.R.M. Hosseini, A new method for fabrication of in situ Al/Al3Ti-Al2O3 nanocomposites based on thermal decomposition of nanostructured tialite, J. Alloys Compd. 643 (2015) 64–73. https://doi.org/10.1016/j.jallcom.2015.04.145.
  • 3. E.A. Starke, J.T. Staleyt, Application of modern aluminum alloys to aircraft, Pro. Aerosp. Sci. 32 (1996) 131–172. https://doi.org/10.1016/0376-0421(95)00004-6.
  • 4. Y. Lin, S. Mao, Z. Yan, Y. Zhang, L. Wang, Melt spinning induces sub-micrometric/ micrometric grained structure and dislocations in 7075 Al alloy, J. Alloys Compd. 651 (2015) 699–704. https://doi.org/10.1016/j.jallcom.2015.08.146.
  • 5. M.B. Lezaack, F. Hannard, L. Zhao, A. Orekhov, J. Adrien, A. Miettinen, H. Idrissi, A. Simar, Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatments, Materialia. 20 (2021) 101248. https://doi.org/10.1016/j.mtla.2021.101248.
  • 6. D.Z. Avery, B.J. Phillips, C.J.T. Mason, M. Palermo, M.B. Williams, C. Cleek, O.L. Rodriguez, P.G. Allison, J.B. Jordon, Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy, Metall. Mater. Trans. A. 51 (2020) 2778–2795. https://doi.org/10.1007/s11661-020-05746-9.
  • 7. J. Fu, K. Wang, X. Li, H. Zhang, Microstructure evolution and thixoforming behavior of 7075 aluminum alloy in the semi-solid state prepared by RAP method, Int. J. Miner. Metall. Mater. 23 (2016) 1404–1415. https://doi.org/10.1007/s12613-016-1364-3.
  • 8. K.W. J. Fu, H. Jiang, Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAP-Based SIMA Process, Acta Metall. Sin. 31 (2018) 337–350. https://doi.org/10.1007/s40195-017-0672-6.
  • 9. X. Meng, D. Zhang, W. Zhang, C. Qiu, D. Chen, Materials Science & Engineering A Achieving high damping capacity and strength simultaneously in a high-zinc aluminum alloy via melt spinning and hot extrusion, Mater. Sci. Eng. A. 833 (2022) 142376. https://doi.org/10.1016/j.msea.2021.142376.
  • 10. P. Wang, H.C. Li, K.G. Prashanth, J. Eckert, S. Scudino, Selective laser melting of Al-Zn-Mg-Cu: Heat treatment, microstructure and mechanical properties, J. Alloys Compd. 707 (2017) 287–290. https://doi.org/10.1016/j.jallcom.2016.11.210.
  • 11. E.T.A. Guner, D. Dispinar, Microstructural and Mechanical Evolution of Semisolid 7075 Al Alloy Produced by SIMA Process at Various Heat Treatment Parameters, Arab. J. Sci. Eng. 44 (2019) 1243–1253. https://doi.org/10.1007/s13369-018-3477-7.
  • 12. W. Wang, J. Shen, W. Liu, H. Bian, Q. Li, Effect of laser energy density on surface physical characteristics and corrosion resistance of 7075 aluminum alloy in laser cleaning, Opt. Laser Technol. 148 (2022) 107742. https://doi.org/10.1016/j.optlastec.2021.107742.
  • 13. X. Su, G. Xu, J. Jiang, Structural and mechanical properties of 7075 alloy strips fabricated by roll-casting in a static magnetic field, Int. J. Miner. Metall. Mater. 21 (2014) 696–701. https://doi.org/10.1007/s12613-014-0960-3.
  • 14. J. Leng, B. Ren, Q. Zhou, J. Zhao, Effect of Sc and Zr on recrystallization behavior of 7075 aluminum alloy, Trans. Nonferrous Met. Soc. China. 31 (2021) 2545–2557. https://doi.org/10.1016/S1003-6326(21)65674-1.
  • 15. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, Microstructure and mechanical properties of a high-Zn aluminum alloy prepared by melt spinning and extrusion, J. Alloys Compd. 819 (2020) 152990. https://doi.org/10.1016/j.jallcom.2019.152990.
  • 16. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, Influence of solution treatment on microstructures and mechanical aluminum alloy, Mater. Sci. Eng. A. 802 (2021) 140623. https://doi.org/10.1016/j.msea.2020.140623.
  • 17. X. Meng, D. Zhang, W. Zhang, C. Qiu, G. Liang, Microstructure and mechanical properties of a rapidly-solidified and extruded Al-13.2 Zn-2.5 Mg− 1.2 Cu-0.2 Zr alloy and its aging hardening response at 120°C, Mater. Sci. Eng. A. 826 (2021). https://doi.org/10.1016/j.msea.2021.141969.
  • 18. R.D.P. Adler, Calorimetric Studies of 7000 Series Aluminum Alloys: II. Comparison of 7075, 7050, and RX720 Alloys, Metall. Trans. A. 8 (1977) 1185–1190. https://doi.org/10.1007/BF02667404.
  • 19. J.K. Park, A.J. Ardell, Precipitate microstructure of peak-aged 7075 Al, Scr. Metall. 22 (1988) 1115-1119. https://doi.org/10.1016/S0036-9748(88)80114-5.
  • 20. P.N. Adler, R. Deiasi, G. Geschwind, Influence of Microstructure on the Mechanical Properties and Stress Corrosion Susceptibility of 7075 Aluminum Alloy, Metall. Trans. 3 (1972) 3191-3200. https://doi.org/10.1007/BF02661333.
  • 21. A.H. Feng, D.L. Chen, Z.Y. Ma, Microstructure and Cyclic Deformation Behavior of a Friction-Stir-Welded 7075 Al Alloy, Metall. Mater. Trans. A. 41 (2010) 957–971. https://doi.org/10.1007/s11661-009-0152-3.
  • 22. Z.M. El-Baradie, M. El-Sayed, Effect of double thermomechanical treatments on the properties of 7075 A1 alloy. J. Mater. Process. Technol. 62 (1996) 76-80. https://doi.org/10.1016/0924-0136(95)02226-0.
  • 23. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52 (2004) 4589–4599. https://doi.org/10.1016/j.actamat.2004.06.017.
  • 24. Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Enhanced mechanical properties in ultrafine grained 7075 Al alloy. J. Mater. Res. 20 (2005) 288-291. https://doi.org/10.1557/JMR.2005.0057.
  • 25. L. Greer, Grain refinement in rapidly solidified alloys. Metals (Basel). 133 (1991) 16–21. https://doi.org/10.1016/0921-5093(91)90006-9.
  • 26. U. A. Curle, G. Govender, Semi-solid rheocasting of grain refined aluminum alloy 7075. Trans. Nonferrous Met. Soc. China. 20 (2010) 832–836. https://doi.org/10.1016/S1003- 6326(10)60590-0.
  • 27. Ł. Rogal, J. Dutkiewicz, H.V. Atkinson, L. Lity, T. Czeppe, M. Modigell, Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater. Sci. Eng. A. 580 (2013) 362–373. https://doi.org/10.1016/j.msea.2013.04.078.
  • 28. D. Srinivasan, K. Chattopadhyay, Metastable phase evolution and hardness of nanocrystalline Al–Si–Zr alloys. Mater. Sci. Eng. 306 (2001) 534–539. https://doi.org/10.1016/S0921-5093(00)01510-0.
  • 29. S. Liu, X. Wang, Q. Zu, B. Han, X. Han, C. Cui, Significantly improved particle strengthening of Al–Sc alloy by high Sc composition design and rapid solidification. Mater. Sci. Eng. A. 800 (2021) 140304. https://doi.org/10.1016/j.msea.2020.140304.
  • 30. Y. Lin, S. Mao, Z. Yan, Y. Zhang, L. Wang, The enhanced microhardness in a rapidly solidified Al alloy. Mater. Sci. Eng. A. 692 (2017) 182–191. https://doi.org/10.1016/j.msea.2017.03.052.
  • 31. L.L. Rokhlin, T.V. Dobatkina, N.R. Bochvar, E.V. Lysova, Investigation of phase equilibria in alloys of the Al–Zn–Mg–Cu–Zr–Sc system. J. Alloys Compd. 367 (2004) 10–16. https://doi.org/10.1016/j.jallcom.2003.08.003.
  • 32. G. Peng, K. Chen, H. Fang, S. Chen, A study of nanoscale Al3(Zr, Yb) dispersoids structure and thermal stability in Al–Zr–Yb alloy. Mater. Sci. Eng. A. 535 (2012) 311–315. https://doi.org/10.1016/j.msea.2011.12.094.
  • 33. D.S. Thompson, B.S. Subramanya, S.A. Levy, Quench Rate Effects in AI-Zn-Mg-Cu Alloys. Metall. Trans. 2 (1971) 1149–1160. https://doi.org/10.1007/BF02664247.
  • 34. K.E. Knipling, D.C. Dunand, D.N. Seidman, Precipitation evolution in Al – Zr and Al – Zr – Ti alloys during aging at 450–600 °C. Acta Mater. 56 (2008) 1182–1195. https://doi.org/10.1016/10.1016/j.actamat.2007.11.011.
  • 35. Y. Yang, J.J. Licavoli, S.A. Hackney, P.G. Sanders, Coarsening behavior of precipitate Al3(Sc,Zr) in supersaturated Al-Sc-Zr alloy via melt spinning and extrusion. J. Mater. Sci. 56 (2021) 11114–11136. https://doi.org/10.1007/s10853-021-05981-4.
  • 36. Y. Yang, J.J. Licavoli, P.G. Sanders, Improved strengthening in supersaturated Al-Sc-Zr alloy via melt- spinning and extrusion. J. Alloys Compd. 826 (2020) 154185. https://doi.org/10.1016/j.jallcom.2020.154185.
  • 37. M. Vlach, V. Kodetova, J. Cizek, M. Leibner, F. Luk, L. Bajtošov, H. Kudrnov, V. Sima, S. Zikmund, E. Cernoskova, P. Kutalek, V. Neubert, V. Neubert, Role of Small Addition of Sc and Zr in Clustering and Precipitation Phenomena Induced in AA7075. Metals (Basel). 22 (2021) 1–20. https://doi.org/10.3390/met11010008.
  • 38. M.F. Kilicaslan, S.I. Elburni, B. Akgul, The effects of Nb addition on the microstructure and mechanical properties of melt spun Al-7075 alloy. Adv. Mater. Sci. 21 (2021) 16–25. https://doi.org/10.2478/adms-2021-0008.
  • 39. S. Murty, S.A. Kori, M. Chakraborty, B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 47 (2013) 1–29. https://doi.org/10.1179/095066001225001049.
  • 40. M. Alipour, M. Azarbarmas, F. Heydari, M. Hoghoughi, M. Alidoost, M. Emamy, The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior. J. Mater. Des. 38 (2012) 64–73. https://doi.org/10.1016/j.matdes.2012.02.008.
  • 41. X. Wang, Z. Liu, W.E.I. Dai, Q. Han, On the understanding of aluminum grain refinement by Al-Ti-B type master alloys. Metall. Mater. Trans. B. 2 (2014) 1620–1625. https://doi.org/10.1007/s11663-014-0252-3.
  • 42. E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications. J. Mater. Sci. 45 (2010) 287–325. https://doi.org/10.1007/s10853-009-3995-5.
  • 43. H. Jones, A perspective on the development of rapid solidification and nonequilibrium processing and its future. Mater. Sci. Eng. 304–306 (2001) 11–19. https://doi.org/10.1016/s0921-5093(00)01552-5.
  • 44. M.F. Kılıçaslan, Y. Yılmaz, B. Akgül, H. Karataş, C.D. Vurdu, Effect of Fe-Ni substitution in FeNiSiB soft magnetic alloys produced by melt spinning. Adv. Mater. Sci. 21 (2021) 79–89. https://doi.org/10.2478/adms-2021-0026.
  • 45. K. Dehghani, M. Salehi, M. Salehi, H. Aboutalebi, Comparing the melt-spun nanostructured aluminum 6061 foils with conventional direct chill ingot. Met. Sci. Eng. 489 (2008) 245–252. https://doi.org/10.1016/j.msea.2007.12.017.
  • 46. Z. Chen, J. Zhao, P. Chen, Microstructure and mechanical properties of nanostructured A8006 ribbons. Mater. Sci. Eng. A. 552 (2012) 189–193. https://doi.org/10.1016/j.msea.2012.05.029.
  • 47. M. Salehi, K. Dehghani, Structure and properties of nanostructured aluminum A413.1 produced by melt spinning compared with ingot microstructure. J. Alloys Compd. 457 (2008) 357–361. https://doi.org/10.1016/j.jallcom.2007.03.117.
  • 48. G.L. Litynska-Dobrzynska, J. Dutkiewicz, W. Maziarz, Microstructure of rapidly solidified Al-12Zn-3Mg-1.5Cu alloy with Zr and Sc additions. Mater. Trans. 52 (2011) 309–314. https://doi.org/10.2320/matertrans.MB201009.
  • 49. K.S. Prasad, A.K. Mukhopadhyay, B. Majumdar, D. Akhtar, K.S. Prasad, A.K. Mukhopadhyay, B. Majumdar, D. Akhtar, On the nature and stability of phases present in a rapidly solidified aluminium alloy 7010 containing scandium. Mater. Manuf. Process. 6914 (2008) 658–664. https://doi.org/10.1080/10426910802316633.
  • 50. M.S.W. Szymanski, M. Bigaj, M. Gawlik, M. Mitka, Consolidation by continuous rotary extrusion of aluminum cast by the melt spinning process. Arch. Metall. Mater. 59 (2014) 309–312. https://doi.org/10.2478/amm-2014-0050.
  • 51. D. Srinivasan, K. Chattopadhyay, Formation and coarsening of a nanodispersed microstructure in melt spun Al–Ni–Zr alloy. Mater. Sci. Eng. A. 255 (1998) 107–116. https://doi.org/10.1016/S0921-5093(98)00769-2.
  • 52. N. Berndt, P. Frint, Influence of extrusion temperature on the aging behavior and mechanical 24 properties of an AA6060. Metals (Basel). 8 (1) (2018) 1–9. https://doi.org/10.3390/met8010051.
  • 53. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, J. Mater. Des. 56 (2014) 862–871. https://doi.org/10.1016/j.matdes.2013.12.002.
  • 54. H.D. Alamdari, D. Dubé, P. Tessier, Behavior of boron in molten aluminum and its grain refinement mechanism. Metall. Mater. Trans. A. 44 (2013) 388–394. https://doi.org/10.1007/s11661-012-1388-x.
  • 55. H. Shang, B. Ma, K. Shi, R. Li, G. Li, The strengthening effect of boron interstitial supersaturated solid solution on aluminum films. Mater. Lett. 192 (2017) 104–106. https://doi.org/10.1016/j.matlet.2016.12.048.
  • 56. P.B. Prakash, K.B. Raju, K. Venkatasubbaiah, N. Manikandan, Microstructure analysis and evaluation of mechanical propertiesof Al 7075 GNP’s composites. Mater. Today Proc. 5 (2018) 14281–14291. https://doi.org/10.1016/j.matpr.2018.03.010.
  • 57. S. Kohiki, M. Nishitani, T. Wada, Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J. Appl. Phys. 75 (1994) 2069–2072. https://doi.org/10.1063/1.356310.
  • 58. Z.Q. Xu, Z.L. Ma, M. Wang, Y.W. Chen, Y.D. Tan, X.W. Cheng, Design of novel lowdensity refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A. 755 (2019) 318–322. https://doi.org/10.1016/j.msea.2019.03.054.
  • 59. A.L. Ortiz, L. Shaw, X-ray diffraction analysis of a severely plastically deformed aluminum alloy. Acta Mater. 52 (2004) 2185–2197. https://doi.org/10.1016/j.actamat.2004.01.012.
  • 60. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, Crystallographic study of grain refinement of Al by Nb addition, J. Appl. Crystallogr. (2014). https://doi.org/10.1107/S1600576714004476.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dd5e1e8d-1e0c-4258-a68c-5930bcc476b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.