Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 2 | art. no. e138, 2023
Tytuł artykułu

Concurrent effects of the shear-lag and warping torsion on the performance of non-rectangular RC shear walls

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aimed at analytically investigating the simultaneous effects of the shear-lag and warping torsion on the performance of non-rectangular reinforced concrete (RC) shear walls. Under the concurrent action of shear and axial loadings, the induced warping deformation due to the shear-lag as well as the warping torsion has been accounted for in the elastic region. On the strength of the minimum potential energy principle, a general formulation has been derived for the stress distribution of non-rectangular RC shear walls. By introducing the appropriate geometrical assumptions, the established formulations have then been re-written for conventional T-, U-, and L-shapes RC shear walls. The veracity of the results is ascertained through a comparative study employing finite element simulations for a U-shaped wall, and good agreement has been achieved to an extent that the proposed analytical formulation is capable to, respectively, predict the axial deformation and stress distribution with an accuracy of 95 and 90%. Also, the findings for the U-shaped wall indicate that the shear-lag can significantly affect the axial stress distribution and cracking load, and neglecting the influence of this phenomenon can lead to an inaccurate and a non-conservative design. Moreover, the contribution of the shear-lag and warping torsion has separately been highlighted for the U-shaped RC wall considered in this study.
Wydawca

Rocznik
Strony
art. no. e138, 2023
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
  • Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
  • Department of Civil Engineering, Sharif University of Technology, Tehran, Iran, khaloo@sharif.edu
Bibliografia
  • 1. Kwan AKH. Shear lag in shear/core walls. J Struct Eng. 1996;122:1097-104.
  • 2. Hoult RD. Shear lag effects in reinforced concrete C-shaped walls. J Struct Eng. 2019;145:4018270.
  • 3. Fahmy EH, Robinson H. Analyses and tests to determine the effective widths of composite beams in unbraced multistorey frames. Can J Civ Eng. 1986;13:66-75.
  • 4. Cambronero-Barrientos F, Díaz-del-Valle J, Martínez-Martínez J-A. Beam element for thin-walled beams with torsion, distortion, and shear lag. Eng Struct. 2017;143:571-88.
  • 5. Li X, Wan S, Mo YL, Shen K, Zhou T, Nian Y. An improved method for analyzing shear lag in thin-walled box-section beam with arbitrary width of cantilever flange. Thin Walled Struct. 2019;140:222-35.
  • 6. Argyridi AK, Sapountzakis EJ. Advanced analysis of arbitrarily shaped axially loaded beams including axial warping and distortion. Thin Walled Struct. 2019;134:127-47.
  • 7. Lezgy-Nazargah M, Vidal P, Polit O. A sinus shear deformation model for static analysis of composite steel-concrete beams and twin-girder decks including shear lag and interfacial slip effects. Thin Walled Struct. 2019;134:61-70.
  • 8. Luo D, Zhang Z, Li B. The effects of shear deformation in non-rectangular steel reinforced concrete structural walls. J Constr Steel Res. 2020;169: 106043.
  • 9. Zhou M, Zhang Y, Lin P, Zhang Z. A new practical method for the flexural analysis of thin-walled symmetric cross-section box girders considering shear effect. Thin Walled Struct. 2022;171: 108710.
  • 10. Palermo D, Vecchio FJ, Solanki H. Behavior of three-dimensional reinforced concrete shear walls. ACI Struct J. 2002;99:81-9.
  • 11. Thomsen JH IV, Wallace JW. Displacement-based design of slender reinforced concrete structural walls - experimental verification. J Struct Eng. 2004;130:618-30.
  • 12. Zhang Z, Li B. Seismic performance assessment of slender T-shaped reinforced concrete walls. J Earthq Eng. 2016;20:1342-69.
  • 13. Constantin R, Beyer K. Behaviour of U-shaped RC walls under quasi-static cyclic diagonal loading. Eng Struct. 2016;106:36-52.
  • 14. Brueggen BL, French CE, Sritharan S. T-shaped RC structural walls subjected to multidirectional loading: test results and design recommendations. J Struct Eng. 2017;143:4017040.
  • 15. Ma J, Zhang Z, Li B. Experimental assessment of T-shaped reinforced concrete squat walls. ACI Struct J. 2018;115:621-34.
  • 16. Hoult R, Beyer K. RC U-shaped walls subjected to in-plane, diagonal, and torsional loading: new experimental findings. Eng Struct. 2021;233: 111873.
  • 17. Palermo D, Abdulridha A, Charette M. Flange participation for seismic design of reinforced concrete shear walls. 2007. p. 1210-19
  • 18. Zhang Z, Luo D, Li B. Strain nonlinearity and shear lag effect in compressive flange of reinforced concrete structural walls. ACI Struct J. 2021;118.
  • 19. Khaloo A, Tabiee M, Abdoos H. A numerical laboratory for simulation of flanged reinforced concrete shear walls. J Numer Methods Civ Eng. 2022;6:92-102.
  • 20. Reissner E. Analysis of shear lag in box beams by the principle of minimum potential energy. Q Appl Math. 1946;4:268-78.
  • 21. Song Q, Scordelis AC. Shear-lag analysis of T-, I-, and box beams. J Struct Eng. 1990;116:1290-305.
  • 22. Haji-Kazemi H, Company M. Exact method of analysis of shear lag in framed tube structures. Struct Des Tall Build. 2002;11:375-88.
  • 23. Building Code Requirements for Structural Concrete (ACI 318-19). 2020.
  • 24. Iranian Concrete Code of Practice (ABA). Planning and management organization, PN, 120. 2021.
  • 25. E. CEN. 8-Design of structures for earthquake resistance - Part 1: general rules, seismic actions and rules for building. London: Br. Stand. Institute; 2004.
  • 26. Uniform Building Code, 1994, International Code Council; 1994.
  • 27. B.S. BS5400, Steel, concrete and composite bridges, Part 5, code of practice for design of composite bridges. London: Br. Stand. Institution; 1979.
  • 28. Brueggen BL. Performance of T-shaped reinforced concrete structural walls under multi-directional loading. Ph.D. Dissertation. 2009.
  • 29. Choi C-S, Ha S-S, Lee L-H, Oh Y-H, Yun H-D. Evaluation of deformation capacity for RC T-shaped cantilever walls. J Earthq Eng. 2004;8:397-414.
  • 30. Beyer K, Dazio A, Priestley MJN. Quasi-static cyclic tests of two U-shaped reinforced concrete walls. J Earthq Eng. 2008;12:1023-53.
  • 31. Zhang Z, Li B. Shear lag effect in tension flange of RC walls with flanged sections. Eng Struct. 2017;143:64-76.
  • 32. Shi Q, Wang B. Simplified calculation of effective flange width for shear walls with flange. Struct Des Tall Spec Build. 2016;25:558-77.
  • 33. Liu C, Wei X, Wu H, Li Q, Ni X. Research on shear lag effect of t-shaped short-leg shear wall. Period Polytech Civ Eng. 2017;61:602-10.
  • 34. Ni X, Cao S. Shear lag analysis of I-shaped structural members. Struct Des Tall Spec Build. 2018;27: e1471.
  • 35. Lu N, Li W. Analytical study on the effective flange width for T-shaped shear walls. Period Polytech Civ Eng. 2020;64:253-64.
  • 36. Tabiee M, Abdoos H, Khaloo A. Investigation of the shear-lag effects on the response of L-shaped RC shear walls. J Struct Constr Eng. 2022. https://doi.org/10.22065/jsce.2022.340500.2804.
  • 37. Abdoos H, Khaloo A, Tabiee M. Effective width estimation of L-shaped RC shear walls using EPR algorithm. Sharif J Civ Eng. 2023;38(2):63-71.
  • 38. Lue DM, Liu J-L, Lin C-H. Numerical evaluation on warping constants of general cold-formed steel open sections. Steel Struct. 2007;7:297-309.
  • 39. Carpinteri A, Lacidogna G, Nitti G. Open and closed shear-walls in high-rise structural systems: static and dynamic analysis. Curved Layer Struct. 2016;3(1):154-71.
  • 40. Capdevielle S, Grange S, Dufour F, Desprez C. A multifiber beam model coupling torsional warping and damage for reinforced concrete structures. Eur J Environ Civ Eng. 2016;20:914-35.
  • 41. Di Re P, Addessi D, Filippou FC. Mixed 3D beam element with damage plasticity for the analysis of RC members under warping torsion. J Struct Eng. 2018;144:4018064.
  • 42. R. Constantin, K. Beyer. Non-rectangular RC walls: a review of experimental investigations. In: 2nd European conference earthquake engineering seismology, 2014.
  • 43. Khaloo H, Tabiee AR, Abdoos M. Analytical study of distribution of shear lag-induced stress in non-rectangular reinforced concrete shear walls. In: 12th international congress on civil engineering, 2021. p. 8.
  • 44. Lezgy-Nazargah M, Vidal P, Polit O. A quasi-3D finite element model for the analysis of thin-walled beams under axial-flexural-torsional loads. Thin Walled Struct. 2021;164: 107811.
  • 45. Khaloo H, Tabiee AR, Abdoos M. Analytical study of distribution of shear lag-induced stress in non-rectangular reinforced concrete shear walls. In: 12th international congress on civil engineering, Mashhad, Iran [In Persian], 2021. p. 8.
  • 46. Tabiee M. Study of shear lag effect on non-rectangular RC shear walls, M.Sc. Thesis, Sharif University of Technology, 2021.
  • 47. Martin H. Elasticity-theory, applications, and numerics. Elsevier Science Publishing Company; 2014.
  • 48. Vlasov VZ. Thin-walled elastic rods. Moscow: Fizmatgiz; 1959.
  • 49. Bleich F. Buckling strength of metal structures. Cardnr: Mc Graw-Hill B. Company Inc; 1952. p. 51-12588.
  • 50. I. canadien de la construction en acier, D. Beaulieu, Calcul des charpentes d’acier, [Willowdale, Ont.]: Institut canadien de la construction en acier, 2003.
  • 51. Galambos TV. Structural members and frames. Upper Saddle River: Prentice-Hall; 1968.
  • 52. Seaburg PA, Carter CJ. Torsional analysis of structural steel members, 1997.
  • 53. Galambos TV. Guide to stability design criteria for metal structures. New York: Wiley; 1998.
  • 54. Bryan SS, Alex C. Tall building structures: analysis and design (1991).
  • 55. Ma J, Li B. Experimental and analytical studies on H-shaped reinforced concrete squat walls. ACI Struct J. 2018;115:425-38.
  • 56. Behrouzi AA, Mock AW, Lehman DE, Lowes LN, Kuchma DA. Impact of bi-directional loading on the seismic performance of C-shaped piers of core walls. Eng Struct. 2020;225: 111289.
  • 57. Roy HEH, Sozen MA. Ductility of concrete. Spec Publ. 1965;12:213-35.
  • 58. Park R, Paulay T. Reinforced concrete structures. New York: Wiley; 1975.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dd0fe902-21a3-41e1-af9b-4f2d0e90cd0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.