Czasopismo
2019
|
Vol. 67, no. 1
|
1--17
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We give a syntactic characterization of abstract elementary classes (AECs) closed under intersections using a new logic with a quantifier for isomorphism types that we call structural logic: we prove that AECs with intersections correspond to classes of models of a universal theory in structural logic. This generalizes Tarski’s syntactic characterization of universal classes. As a corollary, we prove that any AEC closed under intersections with countable Löwenheim-Skolem-Tarski number is axiomatizable in L∞,ω(Q), where Q is the quantifier “there exist uncountably many”.
Rocznik
Tom
Strony
1--17
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
- Department of Mathematics, Harvard University, Cambridge, MA 02138, U.S.A., wboney@math.harvard.edu
autor
- Department of Mathematics, Harvard University, Cambridge, MA 02138, U.S.A., sebv@math.harvard.edu
Bibliografia
- [Bal09] J. T. Baldwin, Categoricity, Univ. Lecture Ser. 50, Amer. Math. Soc., 2009.
- [BB17] J. T. Baldwin and W. Boney, Hanf numbers and presentation theorems in AECs, in: Beyond First Order Model Theory, J. Iovino (ed.), CRC Press, 2017, 327-352.
- [BK09] J. T. Baldwin and A. Kolesnikov, Categoricity, amalgamation, and tameness, Israel J. Math. 170 (2009), 411-443.
- [BL16] J. T. Baldwin and P. B. Larson, Iterated elementary embeddings and the model theory of infinitaMathematical Logic and Foundations Mathematical Logic and Foundations Mathematical Logic and Foundationsry logic, Ann. Pure Appl. Logic 167 (2016), 309-334.
- [BLS15] J. T. Baldwin, P. B. Larson, and S. Shelah, Almost Galois ω-stable classes, J. Symbolic Logic 80 (2015), 763-784.
- [BS08] J. T. Baldwin and S. Shelah, Examples of non-locality, J. Symbolic Logic 73 (2008), 765-782.
- [BFB85] J. Barwise, S. Feferman, and A. Baudisch (eds.), Model-Theoretic Logics, Springer, 1985.
- [BR12] T. Beke and J. Rosický, Abstract elementary classes and accessible categories, Ann. Pure Appl. Logic 163 (2012), 2008-2017.
- [BU17] W. Boney and S. Unger, Large cardinal axioms from tameness in AECs, Proc. Amer. Math. Soc. 145 (2017), 4517-4532.
- [HS90] B. Hart and S. Shelah, Categoricity over P for first order T or categoricity for ɸ ϵ Lω1,ω can stop at ℵk while holding for ℵ0,…, ℵk-1, Israel J. Math. 70 (1990), 219-235.
- [Hen] S. Henry, An abstract elementary class non-axiomatizable in L(∞,k), arXiv:1812. 00652v1 (2008).
- [HK06] T. Hyttinen and M. Kesälä, Independence in finitary abstract elementary classes, Ann. Pure Appl. Logic 143 (2006), 103-138.
- [Kir10] J. Kirby, On quasiminimal excellent classes, J. Symbolic Logic 75 (2010), 551-564.
- [Kir13] J. Kirby, A note on the axioms for Zilber’s pseudo-exponential fields, Notre Dame J. Formal Logic 54 (2013), 509-520.
- [Kue08] D. W. Kueker, Abstract elementary classes and infinitary logics, Ann. Pure Appl. Logic 156 (2008), 274-286.
- [Lie11] M. J. Lieberman, Category-theoretic aspects of abstract elementary classes, Ann. Pure Appl. Logic 162 (2011), 903-915.
- [LRV19] M. J. Lieberman, J. Rosický, and S. Vasey, Universal abstract elementary classes and locally multipresentable categories, Proc. Amer. Math. Soc. 147 (2019), 1283-1298.
- [Lin66] P. Lindström, First order predicate logics with generalized quantifiers, Theoria 32 (1966), no. 3, 186-195.
- [MP89] M. Makkai and R. Paré, Accessible Categories: The Foundations of Categorical Model Theory, Contemp. Math. 104, Amer. Math. Soc., 1989.
- [MSS76] J. A. Makowsky, S. Shelah, and J. Stavi, Δ-Logics and generalized quantifiers, Ann. Math. Logic 10 (1976), 155-192.
- [Mos57] A. Mostowski, On a generalization of quantifiers, Fund. Math. 44 (1957), 12-36.
- [Rab62] M. O. Rabin, Classes of models and sets of sentences with the intersection property, Ann. Fac. Sci. Univ. Clermont-Ferrand Sér. Math. 7 (1962), 39-53.
- [She75] S. Shelah, Generalized quantifiers and compact logic, Trans. Amer. Math. Soc. 204 (1975), 342-364.
- [She87] S. Shelah, Classification of non elementary classes II. Abstract elementary classes, in: Classification Theory (Chicago, IL, 1985), J. T. Baldwin (ed.), Lecture Notes in Math. 1292, Springer, 1987, 419-497.
- [She09a] S. Shelah, Classification Theory for Abstract Elementary Classes, Stud. Logic 18, College Publ. London, 2009.
- [She09b] S. Shelah, Classification Theory for Abstract Elementary Classes 2, Stud. Logic 20, College Publ., London, 2009.
- [Tar54] A. Tarski, Contributions to the theory of models I, Indag. Math. 16 (1954), 572-581.
- [Vas16] S. Vasey, Infinitary stability theory, Arch. Math. Logic 55 (2016), 567-592.
- [Vas17a] S. Vasey, Shelah’s eventual categoricity conjecture in universal classes: part I, Ann. Pure Appl. Logic 168 (2017), 1609-1642.
- [Vas17b] S. Vasey, Shelah’s eventual categoricity conjecture in universal classes: part II, Selecta Math. 23 (2017), 1469-1506.
- [Vas18] S. Vasey, Quasiminimal abstract elementary classes, Arch. Math. Logic 57 (2018), 299-315.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dcecff24-f263-48c1-bf0b-a8a3c2775a71