Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 2, no. 1 | 151--161
Tytuł artykułu

Comprehensive Methodology for Geometrization of Mineral Deposits

Treść / Zawartość
Warianty tytułu
PL
Kompleksowa metodologia geometryzacji złóż minerałów
Języki publikacji
EN
Abstrakty
EN
The article proposes a comprehensive methodology for geometrization of a mineral deposit. Based on existing concepts of geometrization, a set of methods for building a geometric model of a mineral deposit is developed. In the course of geometrization of mineral deposits, the authors of the research widely use geo-information systems. Geological exploration and survey data are used as the basis for geometrization. The most widely used estimation methods are considered when developing the methodology for estimating mineral reserves. The modified method of parallel vertical sections proves to be the most effective way to estimate the reserves of deposits of complex geometric shapes. The authors develop the methodology for determining optimal location of sections in relation to the mineral deposit under estimation. Both geostatistical estimation methods implemented in geo-information systems and a multidimensional heuristic estimation method developed by the authors of the research are used for geometrization purposes. This set of mining geometric methods enables actual and predictive geometrization of a mineral deposit and estimation of its reserves. The geometrization methodology developed by the authors makes it possible to rationally plan mining operations and increase mining enterprise efficiency.
PL
W artykule zaproponowano kompleksową metodologię geometryzacji złóż kopaliny. Na podstawie istniejących koncepcji geometryzacji opracowano zestaw metod budowy modelu geometrycznego złoża kopaliny. W procesie geometryzacji złóż kopalin autorzy badań szeroko wykorzystują systemy geoinformacyjne. Podstawą geometryzacji są dane z badań geologicznych. Przy opracowywaniu metodologii szacowania zasobów kopalin uwzględniane są najczęściej stosowane metody. Zmodyfikowana metoda równoległych przekrojów pionowych okazuje się najskuteczniejszą metodą szacowania zasobów złóż o skomplikowanych kształtach geometrycznych. Autorzy opracowują metodykę wyznaczania optymalnej lokalizacji przekrojów szacowanego złoża kopaliny. Do celów geometryzacji wykorzystywane są zarówno metody estymacji geostatystycznej stosowane w systemach geoinformacyjnych, jak i opracowana przez autorów wielowymiarowa metoda estymacji heurystycznej. Ten zestaw górniczych metod geometrycznych umożliwia rzeczywistą i predykcyjną geometrię złoża kopaliny oraz oszacowanie jej zasobów. Opracowana przez autorów metodologia geometryzacji pozwala racjonalnie planować działalność górniczą i zwiększać efektywność przedsiębiorstwa górniczego.
Wydawca

Rocznik
Strony
151--161
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Krakow, Poland, sobczyk@agh.edu.pl
Bibliografia
  • 1. Stupnik, M., Kalinichenko, V. (2013). Magnetite quartzite mining is the future of Kryvyi Rig iron ore basin. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 49–52.
  • 2. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B. & Mirchenko, Ye.G. (2013). Prospects of application of TNT-free explosives in ore deposites developed by uderground mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 44–48.
  • 3. Kalinichenko, O., Fedko, M., Kushnerov, I. & Hryshchenko, M. (2019). Muck drawing by inclined two-dimensional flow. E3S Web of Conferences, 123, 01015.
  • 4. Stupnik, M.I., Kalinichenko, O.V. & Kalinichenko, V.O. (2012). Technical and economic study of self-propelled machinery application expediency in mines of krivorozhsky bassin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 39–42.
  • 5. Stupnik, M, Fedko, M, Hryshchenko, M, Kalinichenko, O & Kalinichenko, V. (2023). Study of Compensation Room Impacts on the Massіf Stability and Mined Ore Mass Quality. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 1(51). 129–135. http://doi.org/10.29227/IM-2023-01-16.
  • 6. Stupnik, N., Kalinichenko, V. (2012). Parameters of shear zone and methods of their conditions control at underground mining of steep-dipping iron ore deposits in Kryvyi Rig basin. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 15–17.
  • 7. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnycho-ho Universytetu, (6), 11–18. https://doi.org/10.29202/nvngu/2019-6/2.
  • 8. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977.
  • 9. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniienko, V., & Abdiev, A. (2022). Analysis of the regularities of basalt open-pit fissility for energy efficiency of ore preparation. Mining of Mineral Deposits, 16(1), 68–76. https://doi.org/10.33271/mining16.01.068.
  • 10. Hryhoriev, Y., Lutsenko, S. & Joukov, S. (2023). Dominant Determinants of Adaptation of the Mining Complex in the Conditions of a Dynamic Environment. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 1(51). 15–21. http://doi.org/10.29227/IM-2023-01-02.
  • 11. Bekbotayeva, A., & Dyussetay, S. (2023). Features of the geological structure of the Kogodai VMS deposit in the Kurchum block. Engineering Journal of Satbayev University, 145(5), 39–44. https://doi.org/10.51301/ejsu.2023.i5.06.
  • 12. Uteshov, Y., Galiyev, D., Galiyev, S., Rysbekov, K., & Nаuryzbayeva, D. (2021). Potential for increasing the efficiency of design processes for mining the solid mineral deposits based on digitalization and advanced analytics. Mining of Mineral Deposits, 15(2), 102–110. https://doi.org/10.33271/mining15.02.102.
  • 13. Mendygaliyev, A., Arshamov, Y., & Yazikov, E. (2022). Orthogonal-contour geometrization of hydrogenetic ore mineralizations. Engineering Journal of Satbayev University, 144(3), 30–33. https://doi.org/10.51301/ejsu.2022.i3.05.
  • 14. Kassymkanova, K.K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17–27. https://doi.org/10.33271/mining17.01.017.
  • 15. Rakishev, B.M. (2022). About the metallogeny of Kazakhstan and its significance for the forecast of mineral deposits. Engineering Journal of Satbayev University, 144(4), 25–33. https://doi.org/10.51301/ejsu.2022.i4.04.
  • 16. Togizov, K., Issayeva, L., Muratkhanov, D., Kurmangazhina, M., Swęd, M., & Duczmal-Czernikiewicz, A. (2023). Rare earth elements in the Shok-Karagay Ore Fields (syrymbet ore district, northern Kazakhstan) and visualisation of the deposits using the geography information system. Minerals, 13(11), 1458. https://doi.org/10.3390/min13111458.
  • 17. Issayeva, L., Togizov, K., Duczmal-Czernikiewicz, A., Kurmangazhina, M., & Muratkhanov, D. (2022). Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Mining of Mineral Deposits, 16(2), 14–21. https://doi.org/10.33271/mining16.02.014.
  • 18. Peremetchyk, A., Pysmennyi, S., Chukharev, S., Shvaher, N, Fedorenko, S., & Moraru, N. (2023). Geometrization of Kryvbas iron ore deposits. IOP Conference Series: Earth and Environmental Science, 1254(1), 012067. http://doi.org/10.1088/1755-1315/1254/1/012067.
  • 19. Yechkalo, Y., Tkachuk, V., Hruntova, T., Brovko, D. & Tron, V. (2019). Augmented reality in training engineering students: Teaching methods. CEUR Workshop Proceedings, 2393, 952–959. http://ceur-ws.org/Vol-2393.
  • 20. Bazaluk, O., Petlovanyi, M., Lozynskyi, V., Zubko, S., Sai, K., & Saik, P. (2021). Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area. Sustainability, 13(2), 834. https://doi.org/10.3390/su13020834.
  • 21. Lozynskyi, V., Medianyk, V., Saik, P., Rysbekov, K., & Demydov, M. (2020). Multivariance solutions for designing new levels of coal mines. Rudarsko Geolosko Naftni Zbornik, 35(2), 23–32. https://doi.org/10.17794/rgn.2020.2.3.
  • 22. Pysmennyi, S., Chukharev, S., Peremetchyk, A., Shvaher, N, Fedorenko, S., & Vu Trung Tien. (2023). Enhancement of the technology of caved ore drawing from the ore deposit footwall “triangle”. IOP Conference Series: Earth and Environmental Science, 1254(1), 012065. http://doi.org/10.1088/1755-1315/1254/1/012065.
  • 23. Petlovanyi, M., Lozynskyi, V., Zubko, S., Saik, P., & Sai, K. (2019). The infuence of geology and ore deposit occurrence conditions on dilution indicators of extracted reserves. Rudarsko Geolosko Naftni Zbornik, 34(1), 83-91. https://doi.org/10.17794/rgn.2019.1.8.
  • 24. Stupnik, M., I., Peregudov, V., V., Morkun, V., S., Oliinyk, T., A. & Korolenko, M., K. (2021). Development of concentration technology for medium-impregnated hematite quartzite of Rryvyi Rih Iron ore basin. Science and Innovation, 16(6), 56–71. SOURCE-WORK-ID: PR1YE.
  • 25. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591. https://doi.org/10.3389/fenvs.2022.852591.
  • 26. Stupnik, N.I., Kalinichenko, V.A., Fedko, M.B. & Mirchenko, Ye.G. (2013). Influence of rock massif stress-strain state on uranium ore breaking technology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 11–16.
  • 27. Stupnik, M.I., Kalinichenko, V.O., Fedko, M.B. & Kalinichenko, O.V. (2018). Investigation into crown stability at underground leaching of uranium ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 20–25.
  • 28. Stupnik, M.I., Kalinichenko, O.V. & Kalinichenko, V.O. (2012). Economic evaluation of risks of possible geomechanical violations of original ground in the fields of mines of Kryvyi rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 126–130.
  • 29. Smoliński, A., Malashkevych, D., Petlovanyi, M., Rysbekov, K., Lozynskyi, V., & Sai, K. (2022). Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face. Energies, 15(24), 9522. https://doi.org/10.3390/en15249522.
  • 30. Babets, D., Sdvyzhkova, O., Hapieiev, S., Shashenko, O., & Prykhodchenko, V. (2023). Multifactorial analysis of a gateroad stability at goaf interface during longwall coal mining – A case study. Mining of Mineral Deposits, 17(2), 9–19. https://doi.org/10.33271/mining17.02.009.
  • 31. Bazaluk, O., Kuchyn, O., Saik, P., Soltabayeva, S., Brui, H., Lozynskyi, V., & Cherniaiev, O. (2023). Impact of ground surface subsidence caused by underground coal mining on natural gas pipeline. Scientific Reports, (13), 19327. https://doi.org/10.1038/s41598-023-46814-5.
  • 32. Mussin, A., Imashev, A., Matayev, A., Abeuov, Ye., Shaike, N., & Kuttybayev, A. (2023). Reduction of ore dilution when mining low-thickness ore bodies by means of artificial maintenance of the mined-out area. Mining of Mineral Deposits, 17(1), 35–42. https://doi.org/10.33271/mining17.01.035.
  • 33. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org10.3390/min11080858.
  • 34. Pysmennyi, S., Chukharev, S., Peremetchyk, A., Fedorenko, S., & Matsui, A. (2023). Study of Stress Concentration on the Contour of Underground Mine Workings. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 1(51), 69–78. http://doi.org/10.29227/IM-2023-01-08.
  • 35. Shashenko, O, Sobczyk, J, Shapoval, V, Konoval, V & Barsukova, S. (2023). Express-Method for Determination of Rock Heaving Parameters. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 1(51). 113–118. http://doi.org/10.29227/IM-2023-01-14.
  • 36. Petlovanyi, M., Saik, P. & Lozynskyi, V. (2023). Substantiating and Assessing the Stability of the Underground System Parameters for the Sawn Limestone Mining: Case Study of the Nova Odesa Deposit, Ukraine. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 1(51). 79–89. http://doi.org/10.29227/IM-2023-01-10.
  • 37. Stupnik, M., Kalinichenko, V., Fedko, M., Kalinichenko, O., Pukhalskyi, V. & Kryvokhin, B. (2019). Investigation of the dust formation process when hoisting the uranium ores with a bucket. Mining of Mineral Deposits, 13(3), 96–103. https://doi.org/10.33271/mining13.03.096.
  • 38. Baltiyeva, A., Orynbassarova, E., Zharaspaev, M., & Akhmetov, R. (2023). Studying sinkholes of the earth’s surface involving radar satellite interferometry in terms of Zhezkazgan field, Kazakhstan. Mining of Mineral Deposits, 17(4), 61–74. https://doi.org/10.33271/mining17.04.061.
  • 39. Matheron, G. (1963). Principles of Geostatistics. Economic Geology, 58(8), 1246–1266. http://dx.doi.org/10.2113/gsec-ongeo.58.8.
  • 40. Matheron, G. (1967). Kriging or polynomial interpolation procedures. CIMM Trans, 70, 240–244.
  • 41. Kim, H.S., Chung, C.K. & Kim, J.J. (2018). Three-dimensional geostatistical integration of borehole and geophysical datasets in developing geological unit boundaries for geotechnical investigations. Quarterly Journal of Engineering Geology and Hydro-geology, 51(1), 79–95. https://doi.org/10.1144/qjegh2016-012.
  • 42. Kim, H.S., Sun, C., G. & Cho, H.I. (2017). Geospatial Big Data-Based Geostatistical Zonation of Seismic Site Effects in Seoul Metropolitan Area. ISPRS International Journal of Geo-Information, 6(6), 174–191. https://doi.org/10.3390/ijgi6060174.
  • 43. Yunsel, T. (2012). A practical application of geostatistical methods to quality and mineral reserve modelling of cement raw materials. Journal of the Southern African Institute of Mining and Metallurgy, 112, 239–249. https://bit.ly/37hhrJi.
  • 44. Ivahnenko, A.G. (1982). Induktivnyj metod samoorganizacii modelej slozhnyh sistem. Kiev: Naukova dumka.
  • 45. Muravina, O.M. & Ponomarenko, I.A. (2016). Programmnaya realizatsiya metoda gruppovogo ucheta argumentov pri unktsional'nom modelirovanii geologo-geofizicheskikh dannykh. Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser. Geologiya, 2, 107–110. http://www.vestnik.vsu.ru/pdf/heologia/2016/02/2016-02-15.pdf.
  • 46. Shurygin, D.N., Vlasenko, S.V. & Shastik, D.S. (2014). Modelirovanie optimalnoj teoreticheskoj variogrammy moshhnosti plasta na osnove metoda gruppovogo ucheta argumentov. Izvestiya vysshix uchebnyx zavedenij. Severo-Kavkazskij region. Seriya: Texnicheskie nauki, 4(179), 76–78.
  • 47. Bukrinsky V.A. (1985). Geometriya nedr. Moscow: Nedra.
  • 48. Pysmennyi, S., Peremetchyk, A., Chukharev, S., Fedorenko, S., Anastasov, D., & Tomiczek, K. (2022). The mining and geo-metrical methodology for estimating of mineral deposits. IOP Conference Series: Earth and Environmental Science, 1049(1), 012029. https://doi.org/10.1088/1755-1315/1049/1/012029.
  • 49. Peremetchyk, A., Pysmennyi, S., Shvaher, N., Fedorenko, S., & Podoynitsyna, T. (2023). Modeling and Prediction of Iron Ore Quality Indicators. Inżynieria Mineralna – Journal of the Polish Mineral Engineering Society, 1(51). 127–136. http://doi.org/10.29227/IM-2023-01-15.
  • 50. David, M. (1980). Geostatisticheskiye metody pri otsenke zapasov rud. Advanced Geostatistics in the Mining Industry. Leningrad: Nedra.
  • 51. Huang, S. & Huaming, A. (2016). Application of geostatistics in the estimation of Sujishan graphite deposits, Mongolia Staveb-n ́ı obzor – Civil Engineering Journal, 27, 487–499. https://doi.org/10.14311/CEJ.2018.04.0039.
  • 52. Hekmatnejad, A., Emery, X. & Alipour-Shahsavari, M. (2019). Comparing linear and non-linear kriging for grade prediction and ore/waste classification in mineral deposits. International Journal of Mining, Reclamation and Environment, 33(4), 247–264. https://doi.org/10.1080/17480930.2017.1386430.
  • 53. Peremetchyk, A., Kulikovska, O., Shvaher, N., Chukharev, S., Fedorenko, S., Moraru, R., & Panayotov, V. (2022). Predictive geometrization of grade indices of an iron-ore deposit. Mining of Mineral Deposits, 16(3), 67-77. https://doi.org/10.33271/mining16.03.067.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dcd49309-ea96-476d-b80d-006aa4176a05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.