Warianty tytułu
Języki publikacji
Abstrakty
The background oriented schlieren (BOS) imaging relies on measuring the light deflection angle in proportion to the refractive index gradient due to the change in the density of a medium. BOS imaging is sensitive to light deflection, and the quantitative measurement requires a reliable calibration method. It is convenient to calibrate the BOS based on the measurement of light deflection. All current BOS calibrations use the random dot as the background and digital image correlation (DIC) as the processing algorithm. Such calibrations can induce an inaccurate measurement. This paper proposes a new method to calibrate the BOS based on measuring a known light deflection angle of a wedge prism. The proposed method uses a fringe pattern instead of the random-dot and works based on phase demodulation. The fringe patterns are phase modulated by the wedge prism (the schlieren object). The demodulation utilizes the Hilbert transform (HT) on the BOS images, giving the phase difference of the images. The BOS converts the phase difference into the deflection angle. The calibration relies on the deviation of the angle measured by the BOS with the known angle of a wedge prism. The results show that the measurement accuracy of the BOS can achieve more than 95%. This result shows high accuracy in measuring the light deflection angle. Also, the proposed method is more accurate than other methods, and fringe patterns outperform random dot patterns in BOS imaging. Soon, this proposed calibration method can be adopted to validate the instruments for measuring the physical properties of a transparent medium in two-dimensional (2-D) visualization, in a contactless and non-intrusive manner.
Czasopismo
Rocznik
Tom
Strony
23--35
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
- Study Program of Physics, Ahmad Dahlan University, Yogyakarta, Indonesia, margi.sasono@fisika.uad.ac.id
autor
- Department of Physics, University of Brawijaya, Malang, East Java, Indonesia
autor
- Department of Physics, University of Brawijaya, Malang, East Java, Indonesia
autor
- Study Program of Physics, Ahmad Dahlan University, Yogyakarta, Indonesia
Bibliografia
- [1] Raffel, M. (2015). Background-oriented schlieren (BOS) techniques. Experiments in Fluids, 56(3), 1-17. https://doi.org/10.1007/s00348-015-1927-5
- [2] Kaganovich, D., Johnson, L. A., Mamonau, A. A., & Hafizi, B. (2020). Benchmarking background oriented schlieren against interferometric measurement using open source tools. Applied Optics, 59(30), 9553. https://doi.org/10.1364/ao.406301
- [3] Becher, L., Voelker, C., Rodehorst, V., & Kuhne, M. (2020). Background-oriented schlieren technique for two-dimensional visualization of convective indoor air flows. Optics and Lasers in Engineering, 134(April), 106282. https://doi.org/10.1016/j.optlaseng.2020.106282
- [4] Ding, H., Yi, S., & Zhao, X. (2019). Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren. Applied Optics, 58(11), 2948. https://doi.org/10.1364/ao.58.002948
- [5] Barinov, Y. A. (2021). Features of the background oriented schlieren method for studying small axisymmetric plasma objects. Journal of Visualization, 24(6), 1131-1139. https://doi.org/10.1007/s12650-021-00763-1
- [6] Heineck, J. T., Banks, D. W., Smith, N. T., Schairer, E. T., Bean, P. S., & Robillos, T. (2021). Background-oriented schlieren imaging of supersonic aircraft in flight. AIAA Journal, 59(1), 11-21. https://doi.org/10.2514/1.J059495
- [7] Luo, H., Kusunose, J., Pinton, G., Caskey, C. F., & Grissom, W. A. (2020). Rapid quantitative imaging of high intensity ultrasonic pressure fields. The Journal of the Acoustical Society of America, 148(2), 660-677. https://doi.org/10.1121/10.0001689
- [8] Ichihara, S., Shimazaki, T., & Tagawa, Y. (2022). Background-oriented schlieren technique with vector tomography for measurement of axisymmetric pressure fields of laser-induced underwater shock waves. Experiments in Fluids, 63(11), 1-18. https://doi.org/10.1007/s00348-022-03524-4
- [9] Beermann, R., Quentin, L., Pösch, A., Reithmeier, E., & Kästner, M. (2017). Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object. Applied Optics, 56(14), 4168. https://doi.org/10.1364/ao.56.004168
- [10] Grauer, S. J., & Steinberg, A. M. (2020). Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography. Experiments in Fluids, 61(3), 1-17. https://doi.org/10.1007/s00348-020-2912-1
- [11] Kaneko, Y., Nishida, H., & Tagawa, Y. (2021). Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge. Measurement Science and Technology, 32(12). https://doi.org/10.1088/1361-6501/ac1ccc
- [12] Shimazaki, T., Ichihara, S., & Tagawa, Y. (2022). Background oriented schlieren technique with fast Fourier demodulation for measuring large density-gradient fields of fluids. Experimental Thermal and Fluid Science, 134, 110598. https://doi.org/10.1016/j.expthermflusci.2022.110598
- [13] Wildeman, S. (2018). Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop. Experiments in Fluids, 59(6). https://doi.org/10.1007/s00348-018-2553-9
- [14] Psota, P., Stašík, M., Kredba, J., Lédl, V., Jašíková, D., Kotek, M., & Kopecký, V. (2022). Quantitative Schlieren imaging based on fringe projection. EPJ Web of Conferences, 264, 01034. https://doi.org/10.1051/epjconf/202226401034
- [15] Porta, D., Echeverría, C., Aguayo, A., Cardoso, J. E. H., & Stern, C. (2016). Recent Advances in Fluid Dynamics with Environmental Applications. Recent Advances in Fluid Dynamics with Environmental Applications, 115-124. https://doi.org/10.1007/978-3-319-27965-7
- [16] van Hinsberg, N. P., & Rösgen, T. (2014). Density measurements using near-field background-oriented Schlieren. Experiments in Fluids, 55(4), 1-11. https://doi.org/10.1007/s00348-014-1720-x
- [17] Meinecke, M., Kilzer, A., & Weidner, E. (2020). Background Orientated Schlieren Method Applied for Liquid Systems of Strong Refractive Gradients. Chemie-Ingenieur-Technik, 92(7), 1089-1097. https://doi.org/10.1002/cite.201900189
- [18] Sharma, S., & Kulkarni, R. (2021). Phase demodulation from a spatial carrier fringe pattern using extended complex Kalman filter. Optics and Lasers in Engineering, 138 (August 2020), 106409. https://doi.org/10.1016/j.optlaseng.2020.106409
- [19] Cai, H., Wang, Y. L., Wainner, R. T., Iftimia, N. V., Gabel, C. V., & Chung, S. H. (2019). Wedge prism approach for simultaneous multichannel microscopy. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-53581-9
- [20] Lin, D., Teichman, J., & Leger, J. R. (2015). Deflectometry for measuring inhomogeneous refractive index fields in two-dimensional gradient-index elements. Journal of the Optical Society of America A, 32(5), 991. https://doi.org/10.1007/s00348-015-1927-5
- [21] Yang, Y. (2017). A Signal Theoretic Approach for Envelope Analysis of Real-Valued Signals. IEEE Access, 5(March), 5623-5630. https://doi.org/10.1109/ACCESS.2017.2688467
- [22] Yang, Y., & Li, C. (2020). Modulated signal detection method for fault diagnosis. IET Science, Measurement and Technology, 14(10), 962-971. https://doi.org/10.1049/iet-smt.2020.0127
- [23] Wynne, L. C., Ballantyne, H. T., Li, X., Di Falco, A., & Schulz, S. A. (2020). A Hilbert transform method for measuring linear and nonlinear phase shifts imparted by metasurfaces. Photonics and Nanostructures - Fundamentals and Applications, 42, 100844. https://doi.org/10.1016/j.photonics.2020.100844
- [24] Wu, Z., Guo, W., Lu, L., & Zhang, Q. (2021). Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry. Optics Express, 29(17), 27181. https://doi.org/10.1364/oe.436116
Uwagi
We would like to thank the Management of Metrology Laboratory at Ahmad Dahlan University for
financial and facility support. Special thanks to Mr. Apik Rusdiarna IP of the Study Program of Physics
(Metrology-Electronic Materials-Instrumentation), Faculty of Applied Science and Technology, Ahmad
Dahlan University, Yogyakarta, Indonesia for his sharing of knowledge and discussion on MATLAB programs
and the use a CCD camera.
financial and facility support. Special thanks to Mr. Apik Rusdiarna IP of the Study Program of Physics
(Metrology-Electronic Materials-Instrumentation), Faculty of Applied Science and Technology, Ahmad
Dahlan University, Yogyakarta, Indonesia for his sharing of knowledge and discussion on MATLAB programs
and the use a CCD camera.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dcc776b7-0919-4898-83b4-4e1c97b6a341