Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 45, No. 3 | 195--216
Tytuł artykułu

Mining Cardinality Restrictions in OWL

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present an approach to mine cardinality restriction axioms from an existing knowledge graph, in order to extend an ontology describing the graph. We compare frequency estimation with kernel density estimation as approaches to obtain the cardinalities in restrictions. We also propose numerous strategies for filtering obtained axioms in order to make them more available for the ontology engineer. We report the results of experimental evaluation on DBpedia 2016-10 and show that using kernel density estimation to compute the cardinalities in cardinality restrictions yields more robust results that using frequency estimation. We also show that while filtering is of limited usability for minimum cardinality restrictions, it is much more important for maximum cardinality restrictions. The presented findings can be used to extend existing ontology engineering tools in order to support ontology construction and enable more efficient creation of knowledge-intensive artificial intelligence systems.
Wydawca

Rocznik
Strony
195--216
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
  • Institute of Computing Science and Center for Artificial Intelligence and Machine Learning, Poznan University of Technology, ul. Piotrowo 2, Poznan, Poland, potoniec@cs.put.poznan.pl
Bibliografia
  • [1] Aad G. et al. Combined measurement of the higgs boson mass in pp collisions at √s = 7 and 8 tev with the atlas and cms experiments. Phys. Rev. Lett., 114:191803, May 2015. The paper has 5,154 authors.
  • [2] Aitchison J. and Aitken C.G.G. Multivariate binary discrimination by the kernel method. Biometrika, 63(3):413-420, 12 1976.
  • [3] Bühmann L., Lehmann J., and Westphal P. Dl-learner - A framework for inductive learning on the semantic web. J. Web Semant., 39:15-24, 2016.
  • [4] Dubielewicz I., Hnatkowska B., Huzar Z., and Tuzinkiewicz L. Domain modeling in the context of ontology. Foundations of Computing and Decision Sciences, 40(1):3-15, Mar. 2015.
  • [5] Ell B., Hakimov S., and Cimiano P. Statistical induction of coupled domain/range restrictions from RDF knowledge bases. In van Erp M., Hellmann S., McCrae J.P., Chiarcos C., Choi K., Gracia J., Hayashi Y., Koide S., Mendes P.N., Paulheim H., and Takeda H., editors, Knowledge Graphs and Language Technology - ISWC 2016 International Workshops: KEKI and NLP&DBpedia, Kobe, Japan, October 17-21, 2016, Revised Selected Papers, volume 10579 of Lecture Notes in Computer Science, pages 27-40. Springer, 2016.
  • [6] Fanizzi N., d’Amato C., and Esposito F. DL-FOIL concept learning in description logics. In Zelezny F. and Lavrac N., editors, Inductive Logic Programming, 18th International Conference, ILP 2008, Prague, Czech Republic, September 10-12, 2008, Proceedings, volume 5194 of Lecture Notes in Computer Science, pages 107-121. Springer, 2008.
  • [7] Fleischhacker D., Völker J., and Stuckenschmidt H. Mining RDF data for property axioms. In Meersman R., Panetto H., Dillon T.S., Rinderle-Ma S., Dadam P., Zhou X., Pearson S., Ferscha A., Bergamaschi S., and Cruz I.F., editors, On the Move to Meaningful Internet Systems: OTM 2012, Confederated International Conferences: CoopIS, DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012. Proceedings, Part II, volume 7566 of Lecture Notes in Computer Science, pages 718-735. Springer, 2012.
  • [8] Galárraga L., Teflioudi C., Hose K., and Suchanek F.M. Fast rule mining in ontological knowledge bases with AMIE+. VLDB J., 24(6):707-730, 2015.
  • [9] Hayes P. and Patel-Schneider P. RDF 1.1 semantics. W3C recommendation, W3C, Feb. 2014. http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.
  • [10] Hnatkowska B. and Woroniecki P. Universal framework for OWL2 ontology transformations. Foundations of Computing and Decision Sciences, 43(4):375-393, Dec. 2018.
  • [11] Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2):65-70, 1979.
  • [12] Horridge M. and Patel-Schneider P. OWL 2 web ontology language manchester syntax (second edition). W3C note, W3C, Dec. 2012.
  • [13] Horrocks I., Patel-Schneider P.F., Boley H., Tabet S., Grosof B., and Dean M. Swrl: A semantic web rule language combining owl and ruleml. Technical report, W3C, 2004. W3C Member Submission 21 May 2004, http://www.w3.org/ Submission/2004/SUBM-SWRL-20040521/.
  • [14] Ju G., Li R., and Liang Z. Nonparametric estimation of multivariate CDF with categorical and continuous data. In Advances in Econometrics, pages 291-318. Emerald Group Publishing Limited, Jan. 2009.
  • [15] Lawrynowicz A. and Potoniec J. Pattern based feature construction in semantic data mining. Int. J. Semantic Web Inf. Syst., 10(1):27-65, 2014.
  • [16] Lehmann J. Dl-learner: Learning concepts in description logics. J. Mach. Learn. Res., 10:2639-2642, 2009.
  • [17] Lehmann J., Isele R., Jakob M., Jentzsch A., Kontokostas D., Mendes P.N., Hellmann S., Morsey M., van Kleef P., Auer S., and Bizer C. Dbpedia - A large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6(2):167-195, 2015.
  • [18] Li H. and Sima Q. Parallel mining of OWL 2 EL ontology from large linked datasets. Knowl. Based Syst., 84:10-17, 2015.
  • [19] Li Q. and Racine J. Nonparametric estimation of distributions with categorical and continuous data. Journal of Multivariate Analysis, 86(2):266-292, 2003.
  • [20] Motik B., Grau B.C., and Patel-Schneider P. OWL 2 web ontology language direct semantics (second edition). W3C recommendation, W3C, Dec. 2012. http://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/.
  • [21] Motik B. and Patel-Schneider P. OWL 2 web ontology language mapping to RDF graphs (second edition). W3C recommendation, W3C, Dec. 2012. http://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/.
  • [22] Muñoz E. and Nickles M. Mining cardinalities from knowledge bases. In Benslimane D., Damiani E., Grosky W.I., Hameurlain A., Sheth A.P., and Wagner R.R., editors, Database and Expert Systems Applications - 28th International Conference, DEXA 2017, Lyon, France, August 28-31, 2017, Proceedings, Part I, volume 10438 of Lecture Notes in Computer Science, pages 447-462. Springer, 2017.
  • [23] Pan J.Z., Ren Y., and Zhao Y. Tractable approximate deduction for OWL. Artif. Intell., 235:95-155, 2016.
  • [24] Parsia B., Rudolph S., Patel-Schneider P., Hitzler P., and Krotzsch M. OWL 2 web ontology language primer (second edition). Technical report, W3C, Dec. 2012.
  • [25] Potoniec J., Jakubowski P., and Lawrynowicz A. Swift linked data miner: Mining OWL 2 EL class expressions directly from online RDF datasets. Journal of Web Semantics, 46-47:31-50, Oct. 2017.
  • [26] Potoniec J. and Lawrynowicz A. Combining ontology class expression generation with mathematical modeling for ontology learning. In Bonet B. and Koenig S., editors, Proc. of the 29th AAAI Conf. on AI, pages 4198-4199. AAAI Press, 2015.
  • [27] Prud’hommeaux E. and Carothers G. RDF 1.1 turtle. W3C recommendation, W3C, Feb. 2014. http://www.w3.org/TR/2014/REC-turtle-20140225/.
  • [28] Quinlan J. Learning logical definitions from relations. Machine Learning, 5(3):239-266, 1990.
  • [29] Racine J.S. Nonparametric econometrics: A primer. Foundations and Trends@ in Econometrics, 3(1):1-88, 2007.
  • [30] Raimond Y. and Schreiber G. RDF 1.1 primer. W3C note, W3C, June 2014. http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.
  • [31] Rivero C.R., Hernandez I., Ruiz D., and Corchuelo R. Towards discovering ontological models from big RDF data. In Castano S., Vassiliadis P., Lakshmanan L.V.S., and Lee M., editors, Advances in Conceptual Modeling - ER 2012 Workshops CMS, ECDM-NoCoDA, MoDIC, MORE-BI, RIGiM, SeCoGIS, WISM, Florence, Italy, October 15-18, 2012. Proceedings, volume 7518 of Lecture Notes in Computer Science, pages 131-140. Springer, 2012.
  • [32] Rizzo G., d’Amato C., Fanizzi N., and Esposito F. Tree-based models for inductive classification on the web of data. Journal of Web Semantics, 45:1-22, Aug. 2017.
  • [33] Schneider M. OWL 2 web ontology language RDF-based semantics (second edition). W3C recommendation, W3C, Dec. 2012. http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/.
  • [34] Tettamanzi A.G.B., Faron-Zucker C., and Gandon F. Possibilistic testing of OWL axioms against RDF data. Int. J. Approx. Reason., 91:114-130, 2017.
  • [35] Volker J., Fleischhacker D., and Stuckenschmidt H. Automatic acquisition of class disjointness. Journal of Web Semantics, 35:124-139, Dec. 2015.
  • [36] Zeman V., Kliegr T., and Svaatek V. Rdfrules preview: Towards an analytics engine for rule mining in RDF knowledge graphs. In Faber W., Fodor P., Gasperis G.D., Giurca A., and Teymourian K., editors, Proceedings of the Doctoral Consortium and Challenge @ RuleML+RR 2018 hosted by 2nd International Joint Conference on Rules and Reasoning (RuleML+RR 2018), Luxebourg, September 20-26, 2018, volume 2204 of CEUR Workshop Proceedings. CEUR-WS.org, 2018.
  • [37] Zhang F., Ma Z.M., Yan L., and Cheng J. Construction of fuzzy OWL ontologies from fuzzy EER models: A semantics-preserving approach. Fuzzy Sets Syst., 229:1-32, 2013.
  • [38] Zurek T. Conflicts in legal knowledge base. Foundations of Computing and Decision Sciences, 37(2):129-145, Oct. 2012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dca09213-8c20-4be4-bc23-62b10514bf97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.