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Introduction

Throughout this note we deal with 
the microheterogeneous periodic chess-
board palisade-type periodic conduc-
tor made of the perfectly bonded con-
stituents. The behavior of these solids 
will be restricted to the heat conduction 
problem based on the Fourier heat con-
duction law and will be investigated in 
the framework of the well known para-
bolic equation which, under denotations 

1 2[ , , 0] ,T  3[0, 0, ] ,T  3z x= ,

1 2[ , , 0] ,Tx x x will be rewritten in the 
form:

( ) [ ( ) ] 0T
tc w w f∂ − ∇ + ∂ ∇ + ∂ + =AAAA  (1)

Symbol w = w(·) stands here for the 
temperature fi eld defi ned in Ω ⊂ R2, 
f = f(·) is the known density of heat 
sources. In the above equation c = c(x, z) 
is the specifi c heat and 

( , )
( , )

( )T

x z
x z

a z
A h

K
h

 (2)

is the conductivity matrix, both in 
(x, z) ∈ Ω. We shall also assume the heat 
fl ux continuity conditions in normal di-
rections onto the interfaces Γ, Γ ⊂ Ω, 
between the constituents of the consid-
ered composite. Since considerations will 
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be restricted to the palisade-type compo-
sites with the chessboard periodic cross-
section, cf. Figure 1, we shall introduce 
the following periodicity conditions: 

( , ) ( , ) ( , )
( , ) ( , ) ( , )

z z z
c z c z c z

= + = +
= + = +

K x K x e K x Qe
x x e x Qe

 (3)

where e = [1, 0, 0]T, Qe =[0, 1, 0]T are 
unit vectors determining the basic chess-
board cell and Q is the π/2-rotation ma-
trix with Oz-axis as the rotation axis, i.e. 
Q = Q(α) for: 

cos sin 0
( ) sin cos 0

0 0 1

α α
α α α

−
=Q   (4)

Figure 1 illustrates an example of 
the considered palisade-type conductor: 
this conductor is a composite material 
made of two constituents: matrix mate-
rial and fi ber material. Eigenvectors of 
the conductivity matrix of white and 
black materials are e1w, e2w, e3w and e1B, 
e2B, e3B respectively. The corresponding 
eigenvalues are denoted by k1w, k2w, k3w 

and k1B, k2B, k3B. It must be emphasized 
that the directions of the above eigenvec-
tors not necessarily should coincide with 
the directions of coordinate axes direc-
tions determined by unit vectors e1 = e = 
= [1, 0, 0], e2 = Qe = [0, 1, 0]T, and e3 = 
= [0, 1, 0]T. Figure 1 illustrates situation 
in which e3w = e3B = [0, 0, 1]T and hence 
h = 0.

The well-known fact is that, due to 
the discontinuous and highly oscillat-
ing form of functional coeffi cients c(·), 
K(·), the direct application of (1) to the 
analysis of special problems in most cas-
es is diffi cult. That is why heat conduc-
tion description based on equation (1) is 
usually replaced by other mathematical 
descriptions which take into account 
mathematical models with more regular 
coeffi cients. The most of these descrip-
tions is based on the assumption that 
microstructure of considered conductor 
is characterized by a certain scalar mi-
crostructure parameter λ > 0. It means 
that in the aforementioned case conduc-
tivity matrix of the considered palisade-
type conductor also should depend on λ, 
K = Kλ. This remark deals also specifi c 

FIGURE 1. Palisade-type conductor with the basic cell of periodic chessboard cross-section
RYSUNEK 1. Przewodnik palisadowy o szachownicowym przekroju poprzecznym wraz z jego komór-
ką szachownicową



Some remarks on the tolerance averaging of heat conduction in chessboard... 133

heat. Hence c = cλ. Since the aim of this 
paper is to discuss the macroproperties of 
heat conduction of the considered com-
posite without the need of summons for 
due fulfi lment of asymptotic limit pas-
sage λ → 0, the tolerance averaging ap-
proach will be taken into account to the 
description of the heat conduction prob-
lems. Obtained on this way tolerance av-
eraged model consists of the system of 
differential equations with constant co-
effi cients for averaged temperature fi eld 

1
0( ) ( )u u SV= ⋅ ∈ Ω  and fl uctuation am-

plitudes fi elds 1
0( , ) ( )A Aw w t SV= ⋅ ∈ Ω ,

which are new basic unknowns. Intro-
duced here functional space 1

0 ( )SV Ω  
consists of slowly-varying functions. It 
must be emphasized that consideration 
of this paper is focused on the tolerance 
approach based on the orthogonalization 
method. For particulars the reader is re-
ferred to Woźniak and Wierzbicki (2000). 
Other approaches to the formulation of 
tolerance averaged models can be found 
in Jikov at al. (1994), Thermomecha-
nics... (2009), Developments... (2010). 

It must be emphasized that, from 
among averaging approaches, the tole-
rance averaging approach seems to be 
the most familiar method to the investi-
gations of various behaviors in compli-
cate periodic material structures. It is a 
consequence of the fact that the toleran-
ce effective modulus for structures with 
two-directional periodicity can be usual-
ly determined on the algebraic way and 
they are good approximations of the re-
lated effective modulus investigated for 
example in the asymptotic homogeniza-
tion which are possible to be determined 
exclusively in the simplest cases. ‘Such 
situations can be evidently imagined in 

the case of chess-board type periodic con-
ductors for which homogenized effective 
modulus is known for isotropic coeffi -
cients, cf. Jikov at al. (1994). In this case 
homogenized effective modulus have 
been determined by the investigation of 
the known heuristic hypothesis, cf. Jikov 
at al. (1994), but not in the direct way 
given in classical homogenization by in-
vestigating the well-known periodic cell 
problem. That is why the references of 
this paper include papers in which tole-
rance averaging technique has been ap-
plied to the modeling of macrodynamics 
of chess-board structures in Wierzbicki 
and Woźniak (1998) and to the modeling 
of various problems dealing to hexago-
nal-type material structures in Cielecka 
(1995, 1999), Cielecka i Woźniak (1999), 
Cielecka i Jędrysiak (2002), Wierzbicki 
i Siedlecka (2004a, b).

Model equations

Following tolerance averaging of 
heat conduction equation (1) we look for 
the temperature fi eld in the form:

( , , ) ( , , ) ( ) ( , , )A Aw x z t u x z t g x x z t
(5)

where:  
1( , , ) ( , , )u x z t c cw x z t−=  is 

referred to as the averaged temperature 
fi eld and ( , )A x tψ , A = 1, ..., N, are extra 
unknowns which are usually referred to 
as the fl uctuation amplitudes. Here and 
in the sequel 〈·〉 stands for the integral 
averaged operator over the basic cell, 
cf. Woźniak and Wierzbicki (2000). Su-
perscripts denoted by latin capitals A, 
B, ... run over 1, 2, ..., N, where N is a 
number of fl uctuation amplitudes. Shape 
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functions ( )Ag xλ , caused by the perio-
dic structure of the composite, should 
be periodic and should satisfy some ad-
ditional conditions like 0Acg =   and 

2( ), ( )A Ag O g Oλ λ λ λ∈ ∇ ∈ , cf. Woź-
niak and Wierzbicki (2000). Following 
Woźniak and Wierzbicki (2000) the sys-
tem of tolerance averaged equations (ba-
sed on the orthogonalization approach) 
can be written in the form:

2

( ) [ ( ) ]

[ ]
[ ]

(

)
                                             (6)

T
t

T A A

A B B A B T B
t

T A B B A B

A B B T A

A

u c u

g f
cg g ag g

g g g g
g g g u

fg

ψ
λ ψ ψ

ψ λ
ψ

∇ + ∂ ∇ + ∂ − ∂ +

+∇ ∇ =

∂ − ∂ ∂ +

+ ∇ ∇ + ∇ −

− ∇ ∂ + ∇ ∇ =

= −

K

K

A h
h AAAA

Under additional assumption h = 0  
tolerance model equations (6) take form  
which can be found in Thermomecha-
nics... (2009). In this paper we shall deal 
with the full anisotropy properties of the 
conductor, i.e. h ≠ 0. Hence, consider-
ations of this paper can be treated as an 
extension of those realized in Woźniak 
i Wierzbicki (2000) in the framework 
of the partial anisotropic determined by 
condition h = 0.

It must be emphasized that so far in 
special problems model equations (6) 
have been applied usually in the case of 
one shape functions, i.e. for N = 1, when 
model equations (6) takes the form:

2

( ) [ ( ) ]

[ ]
[ ]

                         (7)

T
t

T

T
t

T

T

u c u

g f
cgg agg

g g
g u fg

ψ
λ ψ ψ

ψ

∇ + ∂ ∇ + ∂ − ∂ +

+ ∇ ∇ =

∂ − ∂ ∂ +

+ ∇ ∇ +

+ ∇ ∇ = −

K

A

A
AAAA

in which we deal with only one shape 
function g and hence with only one fl uc-
tuation amplitude ψ. In this case since 

0T g g∇ ∇ ≠A  

 

after applying limit pas-
sage λ → 0 the concept of effective mo-
dulus is possible to introduce, cf. Woź-
niak i Wierzbicki (2000). 

Remark. In the most cases, 
in which N > 1, shape functions 

1 2( ), ( ), ..., ( )Ng x g x g x  are not indepen-
dent. It means that in many cases matrix 

T A Bg g∇ ∇A  being the coeffi cient in 
term T A B Bg g W∇ ∇A  in equations (6) 
is not invertible. 

In the asymptotic case, i.e. when 
limit passage λ → 0 

 

should be applied, 
the very important typical procedure 
of determination from the model equa-
tions (6) the effective modulus is pos-
sible to be realized provided that matrix

T Bg g∇ ∇A  is invertible. It is mean that 
model equations (6) are practically use-
less when matrix T A Bg g∇ ∇A  is not in-
vertible. That is why in such situations 
we shall transform model equations (6) 
to the form in which this inconvenience 
does not take place. 

In the subsequent considerations we 
are to describe example of such transfor-
mation. To this end let us consider the 
chessboard palisade-type conductor sati-
sfying two following assumptions:

Assumption 1. The material structure 
of the anisotropic conductor is invariant 
under π/2-rotations with respect to the 
axis of symmetry of any chessboard-type 
palisade as the axis of rotations. 

Assumption 2. The sequence  
1, ..., Ng g of the shape functions is inde-

pendent on z variable and invariant over  
π/2-rotations with the center of a chess-
board cell as the origin of the rotation.



Some remarks on the tolerance averaging of heat conduction in chessboard... 135

In the next section, similarly as in the 
similar considerations dealing hexago-
nal-type periodic conductors explained 
in Wierzbicki and Woźniak (1998), we 
are to reformulate tolerance equations 
system (6) to an alternative form.  

Isotropic properties of model 
equations

To transform tolerance equations (6) 
to the form familiar to the investigation 
of isotropic properties of the considered 
conductor we are to outline the line of 
approach similar to that which has been 
presented in Wierzbicki (2010). Firstly, 
we shall represent decomposition (5) in 
the form:

( , , ) ( , , ) ( ) ( , , )a a
r rw x z t u x z t g x x z tλ ψ= +

(8)

where indices a, r run over the sequen-
ces 1, 2, ..., n and 0, 1, 2, 3, respectively. 
Taking into account (8) model equations 
(6) yield 

( ) [ ( ) ]

(

)

T
t

T a a
r r

a b b a b T b
s r t r s r r
T a b b a b

s r r s r
a b T b T a a
s r r s s

u c u

g f

cg g ag g

g g g g

g g g u fg

K

K

A h

h A

(9)
According to the Assumption 2 we 

shall assume that 

1( ) ( ( ))a a
r rg x g rot x+ =   (10)

where operation rot(x) is defi ned on Figu-
re 2, and the set consisting of fl uctuation 
amplitudes a

rψ , a = 1, ..., n, r = 0, 1, 2, 3, 

L −−−− r r 

x1

x2

L −−−− r 

r 

x0

x0= (x01, x02) 

x = (x1, x2) 
rot(x) = [x −x0]Q(π/2)+x0

FIGURE 2. The four-tuple 0 1 2 3( ( ) ( ), ( ), ( ), ( ))x g x g x g x g x  generated by single basic shape function 
0( ) ( )x g x

RYSUNEK 2. Czwórka 0 1 2 3( ( ) ( ), ( ), ( ), ( ))x g x g x g x g x  funkcji generowanych przez pojedynczą 
tworzącą funkcję kształtu 0( ) ( )x g x
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is the same as the set consisting of fl uctu-
ation amplitudes Aψ  but enumeration of 
elements of both sets are different. Hen-
ce N = 4n. Functions ( ), 1, ..., ,a x a nγ =  
defi ned by 

0( ) ( ), 1, ...,a ax g x a nγ ≡ =  (11)

will be referred to as a basic shape 
functions.  

Now, instead of fl uctuation amplitude 
a
rψ  we shall introduce new amplitudes  

2 3
0 1 2 3( )a r a a a a a

rψ ψ ψ ψ ψ= = + + +e Q Q Qv tv tv tv t

(12)

where tr = Qre, r = 0, 1, 2, 3, are four unit 
vectors determining the basic chess-board 
cell. It is easy to verify that for an arbitrary 
a = 1, ..., n, formula (10) does not repre-
sent any invertible linear transformation 
between four−tuple 0 1 2 3( , , , )a a a aψ ψ ψ ψ and 
va. Although, formula (12) determines an 
invertible linear transformation between 
pair 0 2 1 3( , )a a a a  and va. Indeed  
amplitudes  

( 2)mod 2 ( 2)mod 2

1 1( ) ( )
2 2

1 ( )
2

a s T a s T r a
s r

sr a a a a
r r s s

ψ

δ ψ ψ ψ ψ− −

= = =

= − = −

t v t v t tt v t v t tt v t v t tt v t v t t

(13)
where ts = (ts)T, s = 0, 1, 2, 3, represents 
related transformation invertible to (12). 
Let us introduce the following averaged 
coeffi cients 

(14)

Rather simple manipulations yield to  

2 2

                          2

[ ]

( ) (15)

T a a
t

ab b ab T b ab b
t

ab b a T a

u c u f

u

A B v

C v D v s v

A v B f

where 

2 2 2

2 2 2

2 2 2

,

                          (16)

ab ab ab

a a a

ab ab ab

ab ab ab

k a a

b b

c c

d d

A 1 A 1

B 1
C 1

D 1

for 

2

2

2 2

2 2

30.5 , ( )
4

3 ( )
4

( )
3 ( )
8

,

,

a a r
r

a a
r

ab r T a b s
r s

ab r T a b
r s

ab a b rs ab a b rs
r s r s

ab a b rs ab a b rs
r s r s

k tr b tr g

b tr g

a g tr g

a g tr g

c cg g c cg g

d ag g d ag g

A A t

A t

t A t

t A t

r

s

(17)

At the end of the paper we shall dis-
tinguish an important situation in which 
the term with coeffi cient ab b∂s v  can be 
omitted and we deal with four shape func-
tions determined by single basic shape 
function (11). In particular such situation 
takes place provided that parts h and hT of 
the conductivity matrix K  given by (2)

2

2

2

ab T a b
r s

a a
r

ab a b
r s

ab a b
r s

g g

g

cg g

ag g

A A t t

B A t

C t t

D t t

r s

r

r s

r s

ab T a b T a b T
r s r p

a a
r

g g g g

fg

s t K t t K t

f t
r s r p

r
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are equal to zero, a.e where consider-
ations reduces to the cases investigated 
in Woźniak and Wierzbicki (2000). In 
this case we have n = 1 and model equa-
tions (15) reduces to the form:

2

2 2 2 2

( )

( ) ( )

( )

T
t

T
t

k u b b c u f

c c d d

b b u

1 v

1 v 1 v

1 f

 

(18)

in which all coeffi cients have the form of 
scalar linear combination of unit matrix 
1 and Ricci matrix ∈

 
and hence are iso-

tropic provided that f = 0. This property 
has an important infl uence on mechani-
cal behaviors described by the above 
model equations in which all coeffi cients 
have the form of scalar linear combina-
tion of unit matrix 1 and Ricci matrix ∈

 and hence are isotropic. This property 
has an important infl uence on mechani-
cal behaviors described by the above 
model equations. 

It must be emphasized that, if we 
deal in (16) with four shape functions de-
termined by single basic shape function 
(9) being well known saw like function 
the tolerance heat fl ux vector –K∇Tw in 
which temperature fi eld w is given by 
micro-macro decomposition (8) is con-
tinuous in all directions normal to the 
interfaces Γ, cf. Figure 2. This result as 
well as similar result dealing hexagonal 
palisade-type rigid conductor is has not 
been proved so far. 

It must be emphasized that the results 
of this paper deal not only palisade-type 
periodic conductor, but also to the cer-
tain class of fi ber reinforced conductors 
satisfying two assumptions formulated 
in Section 2. This remark is illustrated in 
Figure 2 where straight lines including 

opportunity apexes of the basic chess-
board cell are not cell symmetry axes.

Possible engineering applicaations

To explain a certain application of 
the obtained model equations (15) we 
are to restrict considerations to the sta-
tionary case in which we deal with four-
tuple 0 1 2 3( ( ) ( ), ( ), ( ), ( ))x g x g x g x g xγ =  
given by exclusively one basic shape 
function l γ  (x). In this case latin indices 
a, b in (15) takes only one value and it 
will be omitted. Moreover, single one 
fl uctuation amplitude v can be decompo-
se onto two terms = +v v vv v vv v vv v v

0 1
 where:

the fi rst term v0 is a solution to the 
boundary value problem for the he-
xagonal layer, formulated indepen-
dent for every x∈Ξ : 

2 0 0 2 0

1 01

2 02

ˆ( , ) ( ),
ˆ( , ) ( )

ab T ab ab

x H x

x H x

D v s v A v 0

v v

v v
0

0

  

(19)

where 1 2[ , ]x H H∈ , 

the second term ( )uv v1 1  is a cer-
tain partial solution to the differen-
tial equation 

2 1 1

2 1 ( )

ab T ab

ab a T au

D v s v

A v B f

  
(20)

The investigation of solutions 
( )u= ∇v vv vv vv v

1 1
 is not analyzed in this paper 

and in its general form seems to be very 
diffi cult problem.

Boundary value problem (19) descri-
bes the thermal boundary layer behav-
ior which can be observed in periodic 

–

–
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microstructured conductors. The aim of 
investigations of solutions to bounda-
ry value problem (19) for palisade-type 
periodic conductors with chessboard as 
well as hexagonal cross-section (with re-
spect to different conductivity properties 
of constituents) yield to the examination 
of engineering validity of using in civil 
engineering dividing walls of the form 
presented in Figure 3. The existence of 
boundary effect behavior suggests that 
for a special choice of material proper-
ties of every constituent illustrated in Fi-
gure 3 dividing wall can properly protect 
the interior of building house from the 
temperature fl uctuations. 

Concluding remarks

In the paper an alternative form of 
the tolerance averaged model of heat 
conduction in the composite conductors 
with microperiodic palisade-type materi-
al structure with a chessboard cross-sec-

tion has been proposed. It was assumed 
that chessboard periodic cell has mate-
rial structure invariant with respect to 
the rotations over π   /2 with origin of an 
arbitrary cell as the origin of the rotation. 
That same invariant property should 
have applied shape functions. Since typ-
ical tolerance averaged equations have 
certain inconveniences make impossible 
of its direct approach, In the paper the 
alternative form of the tolerance model 
is proposed. This new form is free under 
these inconvenience. Moreover, in many 
important cases this new form of model 
equations has isotropic coeffi cients. It 
means that in the macroscale geometrical 
properties of the microstructure has  ma-
jor infl uence on the material properties 
of considered composite in macroscale. 

Considerations of this paper can be 
treated as a introduction to the investiga-
tion of the boundary effect behaviors in 
the case in which chessboard palisade-
type periodic conductor is invariant under 
described above internal π   /2-rotations.

FIGURE 3. The dividing walls made of palisade-type periodic composites
RYSUNEK 3. Przegroda budowlana zbudowana z periodycznego kompozytu palisadowego
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Summary

Some remarks on the tolerance avera-
ging of heat conduction in chessboard pa-
lisade-type periodic composites. The paper 
deals with periodic composites which mate-
rial structure is described by the anisotropic 
conductivity matrix invariant with respect 
to the pair of orthogonal translations such 
that the periodic cell determined by them 
coincides with the shape of chess-board cell. 
Moreover, it will be assumed that the material 
structure is invariant over the  π  /2-rotations 
with the symmetry axes of any chess-board 
cell and orthogonal to this cell as the axes 
of the rotation. The main aim of this paper is 
to discuss the problem of the macroisotropic 
properties of heat conduction of the consid-
ered conductor. 

Streszczenie

Uśrednianie tolerancyjne przewodni-
ctwa ciepła w kompozytach palisadowych 
o przekroju typu szachownicy. W pracy 
zaproponowano alternatywną postać tole-
rancyjnie uśrednionego modelu przewodni-
ctwa ciepła kompozytu o mikroperiodycznej 
strukturze materialnej typu palisadowego 
o przekroju szachownicowym. Założono 
niezmienniczość tej mikrostruktury wzglę-
dem obrotów o kąt π  /2 względem osi prze-
chodzącej przez środek pojedynczej kostki 
szachownicy, a także taką samą niezmien-
niczość stosowanych funkcji kształtu. Po-
nieważ typowe równania tolerancyjne mają 
w takim przypadku matematyczne wady 
uniemożliwiające ich bezpośrednie stoso-
wanie, zaproponowano więc nową postać 
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modelu, który jest już wolny od tych niedo-
godności. W niektórych ważnych przypad-
kach nowa postać modelu ma współczynniki 
izotropowe, co wskazuje na to, że w skali 
makro zdarza się, że geometryczna budowa 
kompozytu ma decydujący wpływ na jego 
makrowłasności materiałowe. 
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