Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 7, nr 3 | 83--98
Tytuł artykułu

CFD simulation of airflow in a new receiver concept for solar tower

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Open cavity solar receivers play an important role in concentrated solar power (CSP) systems and hold great promise, particularly in scenarios where their ability to absorb high fluxes at very high temperatures yields beneficial results. This intense concentration of sunlight can be used to produce electricity through various means, such as generating steam to drive a turbine. The efficiency of the open volumetric receiver concept relies heavily on the air return ratio (ARR) which refers to the proportion of air recirculated and returned to the receiver. A high ARR contributes to high receiver efficiencies, as with rising ARR, the reused part of the enthalpy of warm air increases. This paper deals with the design and simulation of a new receiver concept with a conical cavity and square cross-section. The objective is to identify the most effective design arrangement for the square-cone structure, considering different depths, that maximizes both the air return ratio (ARR) and thermal efficiency. The findings demonstrate that increasing the depth of the mentioned receiver leads to a rise in the ARR, up to a certain threshold which can reach values up to 94.53%, beyond which there is a subsequent decline in efficiency. Furthermore, this study examined how varying the amount of air passing through a specific section of the receiver across a defined area, along with the temperature changes in these sections, affected its operational efficiency.
Wydawca

Rocznik
Strony
83--98
Opis fizyczny
Bibliogr. 11 poz., rys., tab., wzory
Twórcy
  • German Aerospace Center (DLR), Institute of Solar Research, Karl-Heinz-Beckurts-Straße 6, 52428 Juelich, Germany, andrii.cheilytko@dlr.de
  • German Aerospace Center (DLR), Institute of Solar Research, Karl-Heinz-Beckurts-Straße 6, 52428 Juelich, Germany
  • German Aerospace Center (DLR), Institute of Solar Research, Karl-Heinz-Beckurts-Straße 6, 52428 Juelich, Germany
  • German Aerospace Center (DLR), Institute of Solar Research, Karl-Heinz-Beckurts-Straße 6, 52428 Juelich, Germany
Bibliografia
  • [1] Khan, I.M., Asfand, F., Al-Ghamdi, S.G. (2023). Progress in research and technological advancements of commercial concentrated solar thermal power plants. Solar Energy. doi.org/10.1016/j.solener.2022.10.041.
  • [2] Pitz-Paal, R. (2020). 19 - Concentrating Solar Power. Future Energy (Third Edition). doi.org/10.1016/B978-0-08-102886-5.00019-0.
  • [3] Stadler, H., Maldonado, D., Offergeld, M., Schwarzbözl, P., Trautner, J. (2019). CFD model for the performance estimation of open volumetric receivers and comparison with experimental data. Solar Energy. doi.org/10.1016/j.solener.2018.11.068.
  • [4] Romero M., Steinfeld, A. (2012). Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science. doi.org/10.1039/c2ee21275g.
  • [5] Zhang, W., Xie, P., Li, Y., Teng, L., Zhu, J. (2022). 3D CFD simulation of the liquid flow in a rotating packed bed with structured wire mesh packing. Chemical Engineering Journal. doi.org/10.1016/j.cej.2021.130874.
  • [6] Cagnoli, M., Froio, A., Savoldi, L., Zanino, R. (2019). Multi-scale modular analysis of open volumetric receivers for central tower CSP systems. Solar Energy, 190, 195-211. doi.org/10.1016/j.solener.2019.07.076.
  • [7] Xijie, S., Yongyao, L., Liu, C., Zhengwei, W., Yan, J. (2023). Numerical simulation and experimental study on an innovative vortex eliminator using a modified SST turbulence model for gas-liquid two-phase flow. Ocean Engineering. doi.org/10.1016/j.oceaneng.2022.113383.
  • [8] Cheilyko, A., Göhring, F..., Wieghardt, K. (2022). Receiver efficiency as a determining criterion for the effectiveness of a solar tower. International Conference on Science, Technology and Management (ICSTM - 2022), 23-24 Nov 2022, Paris, France.
  • [9] Springer VDI Heat Atlas. (2010). B1 Fundamentals of Heat Transfer. In: VDI Heat Atlas. doi.org/10.1007/978-3-540-77877-6.
  • [10] Cheilytko, A.O. (2014). Use of secondary energy resources: a study guide for students of ZGIA, specialty 6.050601. Heat and Power Engineering, full-time and part-time. Zaporizhzhia: ZGIA, 2014. 246 p.
  • [11] Rodriguez, J.I., Mills, A.F. (1996). Heat transfer and flow friction characteristics of perforated-plate heat exchangers. Experimental Heat Transfer. doi.org/10.1080/08916159608946529.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dc415cba-0d2a-44ad-ae17-af58ec999bc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.