Czasopismo
2016
|
Vol. 148, nr 1/2
|
173--190
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Rough Set Theory Workshop (RST’2015); (6; 29-06-2015; University of Warsaw )
Języki publikacji
Abstrakty
Rough sets are investigated from the viewpoint of topos theory. Two categories RSC and ROUGH of rough sets and a subcategory ξ-RSC are focussed upon. It is shown that RSC and ROUGH are equivalent. Generalizations RSC(C ) and ξ-RSC(C ) are proposed over an arbitrary topos C. RSC(C ) is shown to be a quasitopos, while ξ-RSC(C ) forms a topos in the special case when C is Boolean. An example of RSC(C ) is given, through which one is able to define monoid actions on rough sets. Next, the algebra of strong subobjects of an object in RSC is studied using the notion of relative rough complementation. A class of contrapositionally complemented 'c.V.c' lattices is obtained as a result, from the object class of RSC. Moreover, it is shown that such a class can also be obtained if the construction is generalized over an arbitrary Boolean algebra.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
173--190
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, India, anujmore@iitk.ac.in
autor
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, India, mohua@iitk.ac.in
Bibliografia
- [1] Pawlak Z. Rough Sets. International Journal of Computer and Information Sciences. 1982;11(5):341–356. doi: 10.1007/BF01001956.
- [2] Iwiński TB. Algebraic Approach to Rough Sets. Bull Polish Acad Sci Math. 1987;35:673–683. doi: 10.1016/S1571-0661(04)80705-9.
- [3] Banerjee M, Chakraborty MK. A Category for Rough Sets. Foundations of Computing and Decision Sciences. 1993;18(3-4):167–180.
- [4] Banerjee M, Chakraborty MK. Foundations of Vagueness: a Category-theoretic Approach. Electronic Notes in Theoretical Computer Science. 2003;82(4):10–19. doi: 10.1016/S1571-0661(04)80701-1.
- [5] Banerjee M, Yao Y. A Categorial Basis for Granular Computing. In: An A, Stefanowski J, Ramanna S, Butz CJ, Pedrycz W, Wang G, editors. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. vol. 4482 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2007. p. 427–434. doi: 10.1007/978-3-540-72530-5_51.
- [6] Eklund P, Galán MA. Monads Can Be Rough. In: Greco S, Hata Y, Hirano S, Inuiguchi M, Miyamoto S, Nguyen H, et al., editors. Rough Sets and Current Trends in Computing. vol. 4259 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2006. p. 77–84. doi: 10.1007/11908029_9.
- [7] Li XS, Yuan XH. The Category RSC of I-Rough Sets. In: Fuzzy Systems and Knowledge Discovery, 2008. FSKD ’08. Fifth International Conference on Fuzzy Systems and Knowledge Discovery. vol. 1; 2008. p.448–452. doi: 10.1109/FSKD.2008.106.
- [8] Lu J, Li SG, Y XF, Fu WQ. Categorical Properties of M-Indiscernibility Spaces. Theoretical Computer Science. 2011;412(42):5902–5908. Rough Sets and Fuzzy Sets in Natural Computing. doi: 10.1016/j.tcs.2011.05.041.
- [9] Diker M. A Category Approach to Relation Preserving Functions in Rough Set Theory. International Journal of Approximate Reasoning. 2015;56, Part PA:71–86. doi:10.1016/j.ijar.2014.07.006.
- [10] Wyler O. Lecture Notes on Topoi and Quasitopoi. World Scientific; 1991. ISBN: 978-981-02-0153-1.
- [11] Goguen JA. Concept Representation in Natural and Artificial Languages: Axioms, Extensions and Applications for Fuzzy Sets. International Journal of Man-Machine Studies. 1974;6(5):513–561. doi: 10.1016/S0020-7373(74)80017-9 .
- [12] Höhle U, Stout LN. Mathematical Aspects of Fuzzy Set Theory Foundations of Fuzzy Sets. Fuzzy Sets and Systems. 1991;40(2):257–296.
- [13] Rasiowa H. An Algebraic Approach to Non-classical Logics. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company; 1974. ISBN: 0720422647, 9780720422641.
- [14] Nowak M. The Weakest Logic of Conditional Negation. Bulletin of the Section of Logic. 1995;24(4).
- [15] Geisler J, Nowak M. Conditional Negation on the Positive Logic. Bulletin of the Section of Logic. 1994;23(3).
- [16] Goldblatt R. Topoi: The Categorial Analysis of Logic. Dover Books on Mathematics. Dover Publications; 2006. ISBN - 13: 080-0759450268, 10: 0486450260.
- [17] Banerjee M, Chakraborty MK. Algebras from Rough Sets. In: Pal SK, Polkowski L, Skowron A, editors. Rough-Neural Computing. Cognitive Technologies. Springer Berlin Heidelberg; 2004. p. 157–184.
- [18] Monro GP. Quasitopoi, logic and Heyting-valued Models. Journal of Pure and Applied Algebra. 1986;42(2):141–164. doi: 10.1016/0022-4049(86)90077-0.
- [19] Banerjee M, Chakraborty MK. Rough Sets Through Algebraic Logic. Fundamenta Informaticae. 1996;28(3,4):211–221. Available from: http://dl.acm.org/citation.cfm?id=246662.246665.
- [20] Cignoli R. The Algebras of Łukasiewicz Many-Valued Logic: A Historical Overview. In: Aguzzoli S, Ciabattoni A, Gerla B, Manara C, Marra V, editors. Algebraic and Proof-theoretic Aspects of Non-classical Logics. vol. 4460 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2007. p. 69–83. doi: 10.1007/978-3-540-75939-3_5.
- [21] Kornai A. Mathematical Linguistics. Springer London; 2008. ISBN: 978-1-84628-985-9, 978-1-84996-694-8. doi: 10.1007/978-1-84628-986-6.
- [22] Stell JG. Relations in Mathematical Morphology with Applications to Graphs and Rough Sets. In: Winter S, Duckham M, Kulik L, Kuipers B, editors. Spatial Information Theory. vol. 4736 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2007. p. 438–454. doi: 10.1007/978-3-540-74788-8_27.
- [23] Fashandi H, Peters JF. Mathematical Morphology and Rough Sets. In: Pal S, Peters J, editors. Rough Fuzzy Image Analysis. Foundations and Methodologies. CRC Press, Taylor Francis Group; 2010. p. 4–1, 4–15.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dc0b5391-f648-42c5-b153-cf052007df66