Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 17, no. 4 | 311--319
Tytuł artykułu

Positronium as a biomarker of hypoxia

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.
Wydawca

Rocznik
Strony
311--319
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
  • M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland, p.moskal@uj.edu.pl
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Theranostics Center, Jagiellonian University, Kraków, Poland
  • M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland, e.stepien@uj.edu.pl
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Theranostics Center, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Moskal P. Positronium imaging. In: 2019 IEEE nuclear science symposium and medical imaging conference (NSS/MIC). IEEE Xplore, Manchester, UK; 2020.
  • 2. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv 2021;7:eabh4394.
  • 3. Shibuya K, Saito H, Nishikido F, Takahashi M, Yamaya T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun Phys 2020;3:1-8.
  • 4. Stepanov P, Selim F, Stepanov S, Bokov A, Ilyukhina O, Duplâtre G, et al. Interaction of positronium with dissolved oxygen in liquids. Phys Chem Chem Phys 2020;22:5123-31.
  • 5. Brahimi-Horn CM, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med 2007;85:1301-7.
  • 6. Krolicki L, Kunikowska D. Theranostics - present and future. Bio Algorithm Med Syst 2021;17:213-20.
  • 7. Vaupel P, Flood AB, Harold, Swartz HM. Oxygenation status of malignant tumors vs. normal tissues: critical evaluation and updated data source based on direct measurements with pO2. Appl Magn Reason 2021;52:1451-79.
  • 8. McKeown SR. Defining normoxia, physoxia and hypoxia in tumours - implications for treatment response. Br J Radiol 2014; 87:20130676.
  • 9. Swartz HM, Flood AB, Schaner PE, Halpern H, Williams BB, Pogue BW, et al. How best to interpret measures of levels of oxygen in tissues to make them effective clinical tools for care of patients with cancer and other oxygen-dependent pathologies. Phys Rep 2020;8:e14541.
  • 10. Becker A, Hansgen G, Bloching M, Weigel C, Lautenschlager C, Dunst J. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 1998;42:35.
  • 11. Nordsmark M, Bentzen SM, Overgaard J. Measurement of human tumour oxygenation status by a polarographic needle electrode. An analysis of inter- and intratumour heterogeneity. Acta Oncol 1994;33:383-9.
  • 12. Lartigau E, Randrianarivelo H, Avril MF, Margulis A, Spatz A, Eschwege F, et al. Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 1997;7:400-6.
  • 13. Lawrentschuk N, Poon AM, Foo SS, Putra LG, Murone C, Davis ID, et al. Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 2005;96:540-6.
  • 14. Nakano T, Suzuki Y, Ohno T, Kato S, Suzuki M, Morita S, et al. Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res 2006;12:2185-90.
  • 15. Friedrich MG, Karamitsos TD. Oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reason 2013;15:43.
  • 16. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017.
  • 17. Moskal P, Kisielewska D, Shopa RY, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2γ positronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:1-16.
  • 18. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun 2021;12: 5658.
  • 19. Stepanov SV, Byakova VM, Stepanov PS. Positronium in biosystems and medicine: a new approach to tumor diagnostics based on correlation between oxygenation of tissues and lifetime of the positronium atom. Phys Wave Phenom 2021;29:174.
  • 20. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299.
  • 21. Karp JS, Viswanath V, Geagan MJ, Muehllehner G, Pantel AR, Parma MJ, et al. PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020;61: 136-43.
  • 22. Moskal P, Stępień E. Prospects and clinical perspectives of total body PET imaging using plastic scintillators. Pet Clin 2020;15: 439-52.
  • 23. Bass SD. QED and fundamental symmetries in positronium decays. Acta Phys Pol B 2019;50:1319.
  • 24. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527-9.
  • 25. Matulewicz T. Radionuclide candidates for theranostics: an overview. Bio Algorithm Med Syst 2021;17. https://doi.org/10.1515/bams-2021-0142.
  • 26. Thirolf PG, Lang C, Parodi K. Perspectives for highly-sensitive PET-based medical imaging using β+γ coincidences. Acta Phys Pol, A 2015;127:1441-4.
  • 27. Byakov VM, Stepanov SV. Common features in the formation of Ps, Mu, radiolytic hydrogen and solvated electrons in aqueous solutions. J Radioanal Nucl Chem 1996;210:371-405.
  • 28. Stepanov SV, Byakov VM. Electric field effect on positronium formation in liquids. J Chem Phys 2002;116:6178-95.
  • 29. Goworek T. Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann Univ Mariae CurieSklodowska 2014;69:1-110.
  • 30. Stepanov SV, Zvezhinskiy DS, Byakov VM, Duplatre G, Stepanov PS. Positrons and positronium atoms in a condensed phase close to its melting point. Acta Phys Pol, A 2014;125:691-5.
  • 31. Kataoka Y, Asai S, Kobayashi T. First test of O(α2) correction of the orthopositronium decay rate. Phys Lett B 2009;671:219-23.
  • 32. Al-Ramadhan AH, Gidley DW. New precision measurement of the decay rate of singlet positronium. Phys Rev Lett 1994;72: 1632-5.
  • 33. Garwin RL. Thermalization of positrons in metals. Phys Rev 1953; 91:1571.
  • 34. Tao SJ. Positronium annihilation in molecular substances. J Chem Phys 1972;56:5499.
  • 35. Eldrup MM, Lightbody D, Sherwood JN. The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 1981;63:51-8.
  • 36. Kotera K, Saito T, Yamanaka T. Measurement of positron lifetime to probe the mixed molecular states of liquid water. Phys Lett A 2005;345:184-90.
  • 37. Sane P, Salonen E, Falck E, Repakova J, Tuomisto F, Holopainen JM, et al. Probing biomembranes with positrons. J Phys Chem B 2009;113:1810-2.
  • 38. Axpe E, Garcia-Arribas AB, Mujika JI, Merida D, Alonso A, Lopez X, et al. Ceramide increases free volume voids in DPPC Membranes. RSC Adv 2015;5:44282-90.
  • 39. Dull TL, Frieze WE, Gidley DW, Sun JN, Yee AF. Determination of pore size in mesoporous thin films from the annihilation lifetime of positronium. J Phys Chem B 2001;105:4657-62.
  • 40. Moskal P, Salabura P, Silarski M, Smyrski M, Zdebik J, Zieliński M. Novel detector systems for the positron emission tomography. Bio Algorithm Med Syst 2011;7:73.
  • 41. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015.
  • 42. Moskal P, Bednarski T, Niedźwiecki SZ, Silarski M, Czerwiński E, Kozik T, et al. Synchronisation and calibration of the 24-modules J-PET prototype with 300 mm axial field of view. IEEE Trans Instrum Meas 2021;70:2000810.
  • 43. Niedźwiecki S, Białas P, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. J-PET: a new technology for the whole-body PET imaging. Acta Phys Pol B 2017;48:1567-76.
  • 44. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol 2016;61:2025-47.
  • 45. Moskal P, Zoń N, Bednarski T, Białas P, Czerwiński E, Gajos A, et al. A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals. Nucl Instrum Methods A 2015;775: 54-62.
  • 46. Moskal P, Niedźwiecki SZ, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl Instrum Methods A 2014;764: 317-21.
  • 47. Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H. PSMA theranostics: current status and future directions. Mol Imag 2018;17:1536012118776068.
  • 48. Kubicz E, Stępień E, Grudzień G, Dulski K, Leszczyński B, Moskal P. Positronium life-time as a new approach for cardiac masses imaging. Eur Heart J 2021;42(1 Suppl):ehab724.3279.
  • 49. Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, et al. Developing a novel positronium biomarker for cardiac myxoma imaging. bioRxiv 2021:455285. https://doi.org/10.1101/2021.08.05.455285.
  • 50. Zgardzińska B, Chołubek G, Jarosz B, Wysogląd K, Gorgol M, Goździuk M, et al. Studies on healthy and neoplastic tissues using positron annihilation lifetime spectroscopy and focused histopathological imaging. Sci Rep 2020;10:11890.
  • 51. Chen HM, van Horn JD, Jean YC. Applications of positron annihilation spectroscopy to life science. Defect Diffusion Forum 2012;331:275-93.
  • 52. Jasińska B, Zgardzińska B, Chołubek G, Pietrow M, Gorgol M, Wiktor K, et al. Human tissue investigations using PALS technique - free radicals influence. Acta Phys Pol, A 2017;132: 1556-8.
  • 53. Kilburn D, Townrow S, Meunier V, Richardson R, Alam A, Ubbink J. Organization and mobility of water in amorphous and crystalline trehalose. Nat Mater 2006;5:632-5.
  • 54. Jean YC, Li Y, Liu G, Chen H, Zhang J, Gadzia JE. Applications of slow positrons to cancer research: search for selectivity of positron annihilation to skin cancer. Appl Surf Sci 2006;252:3166-71.
  • 55. Axpe E, Lopez-Euba T, Castellanos-Rubio A, Merida D, Garcia JA, Plaza-Izurieta L, et al. Detection of atomic scale changes in the free volume void size of three-dimensional colorectal cancer cell culture using positron annihilation lifetime spectroscopy. PLoS One 2014;9:e83838.
  • 56. Pałka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki SZ, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J Instrum 2017;12:P08001.
  • 57. Korcyl G, Białas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evaluation of single-chip, real-time tomographic data processing on FPGA SoC devices. IEEE Trans Med Imag 2018;37:2526-35.
  • 58. Kacperski K, Spyrou NM. Performance of three-photon PET imaging: Monte Carlo simulations. Phys Med Biol 2005;50: 5679.
  • 59. Mercurio K, Zerkel P, Laforest R, Sobotka LG, Charity RJ. The threephoton yield from e+ annihilation in various fluids. Phys Med Biol 2006;51:N323-9.
  • 60. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dbf240a5-bcd9-48a8-9ac2-4f425268ed0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.