Warianty tytułu
Języki publikacji
Abstrakty
While automation-assisted reading system can improve efficiency, their performance often relies on the success of accurate cell segmentation and hand-craft feature extrac- tion. This paper presents an efficient and totally segmentation-free method for automat-ed cervical cell screening that utilizes modern object detector to directly detect cervical cells or clumps, without the design of specific hand-crafted feature. Specifically, we use the state-of-the-art CNN-based object detection methods, YOLOv3, as our baseline model. In order to improve the classification performance of hard examples which are four highly similar categories, we cascade an additional task-specific classifier. We also investigate the presence of unreliable annotations and coped with them by smoothing the distribu- tion of noisy labels. We comprehensively evaluate our methods on our test set which is consisted of 1014 annotated cervical cell images with size of 4000 3000 and complex cellular situation corresponding to 10 categories. Our model achieves 97.5% sensitivity (Sens) and 67.8% specificity (Spec) on cervical cell image-level screening. Moreover, we obtain a best mean average precision (mAP) of 63.4% on cervical cell-level diagnosis, and improve the average precision (AP) of hard examples which are the most valuable but most difficult to distinguish. Our automation-assisted cervical cell reading system not only achieves cervical cell image-level classification but also provides more detailed location and category reference information of abnormal cells. The results indicate feasible performance of our method, together with the efficiency and robustness, provid- ing a new idea for future development of computer-assisted reading systems in clinical cervical screening.
Czasopismo
Rocznik
Tom
Strony
611--623
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
autor
- School of Computer Science and Engineering, Central South University, Changsha, China, yao.xiang@csu.edu.cn
autor
- School of Computer Science and Engineering, Central South University, Changsha, China, sunwanxin@csu.edu.cn
autor
- School of Computer Science and Engineering, Central South University, Changsha, China, changlip@csu.edu.cn
autor
- School of Computer Science and Engineering, Central South University, Changsha, China, bryant@csu.edu.cn
autor
- School of Computer Science and Engineering, Central South University, Changsha, China, yzhuajd@csu.edu.cn
autor
- School of Computer Science and Engineering, Central South University, Room 411, Computer Building, Lushan South Road, No 932, Changsha 410083, China, yxliang@csu.edu.cn
Bibliografia
- [1] William W, Ware A, Basaza-Ejiri AH, Obungoloch J. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput Methods Programs Biomed 2018;164:15–22.
- [2] Mishra GA, Pimple SA, Shastri SS. An overview of prevention and early detection of cervical cancers. Indian J Med Paediatr Oncol: Off J Indian Soc Med Paediatr Oncol 2011;32(3):125.
- [3] Bora K, Chowdhury M, Mahanta LB, Kundu MK, Das AK. Automated classification of pap smear images to detect cervical dysplasia. Comput Methods Programs Biomed 2017;138:31–47.
- [4] Nayar R, Wilbur DC. The Bethesda system for reporting cervical cytology: definitions, criteria, and explanatory notes. Springer; 2015.
- [5] William W, Ware A, Basaza-Ejiri AH, Obungoloch J. A pap-smear analysis tool (pat) for detection of cervical cancer from pap-smear images. Biomed Eng Online 2019;18(1):16.
- [6] Birdsong GG. Automated screening of cervical cytology specimens. Human Pathol 1996;27(5):468–81.
- [7] Koss LG, Lin E, Schreiber K, Elgert P, Mango L. Evaluation of the papnet cytologic screening system for quality control of cervical smears. Am J Clin Pathol 1994;101(2):220–9.
- [8] Wilbur DC, Prey MU, Miller WM, Pawlick GF, Colgan TJ. The autopap system for primary screening in cervical cytology. comparing the results of a prospective, intended-use study with routine manual practice. Acta Cytol 1998;42(1):214–20.
- [9] Wilbur DC, Black-Schaffer WS, Luff RD, Abraham KP, Kemper C, Molina JT, et al. The Becton Dickinson focalpoint GS imaging system: clinical trials demonstrate significantly improved sensitivity for the detection of important cervical lesions. Am J Clin Pathol 2009;132(5):767–75.
- [10] Biscotti CV, Dawson AE, Dziura B, Galup L, Darragh T, Rahemtulla A, et al. Assisted primary screening using the automated thinprep imaging system. Am J Clin Pathol 2005;123(2):281–7.
- [11] Kitchener HC, Blanks R, Dunn G, Gunn L, Desai M, Albrow R, et al. Automation-assisted versus manual reading of cervical cytology (mavaric): a randomised controlled trial. Lancet Oncol 2011;12(1):56–64.
- [12] Bengtsson E, Malm P. Screening for cervical cancer using automated analysis of pap-smears. Comput Math Methods Med 2014.
- [13] GençTav A, Aksoy S, ÖNder S. Unsupervised segmentation and classification of cervical cell images. Pattern Recogn 2012;45(12):4151–68.
- [14] Zhang L, Kong H, Ting Chin C, Liu S, Fan X, Wang T, et al. Automation-assisted cervical cancer screening in manual liquid-based cytology with hematoxylin and eosin staining. Cytometry Part A 2014;85(3):214–30.
- [15] Sarwar A, Sharma V, Gupta R. Hybrid ensemble learning technique for screening of cervical cancer using papanicolaou smear image analysis. Pers Med Universe 2015;4:54–62.
- [16] Sharma B, Mangat KK. Various techniques for classification and segmentation of cervical cell images – a review. Int J Comput Appl 2016;147(9).
- [17] Jantzen J, Norup J, Dounias G, Bjerregaard B. Pap-smear benchmark data for pattern classification. Nature inspired Smart Information Systems (NiSIS 2005) 2005;1–9.
- [18] Fertig RM, Sangueza O, Gaudi S, Gamret AC, Cervantes J, Jukic DM. Whole slide imaging. Am J Dermatopathol 2017;1.
- [19] Zhang L, Lu L, Nogues I, Summers RM, Liu S, Yao J. Deeppap: deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inform 2017;21(6):1633–43.
- [20] Redmon J, Farhadi A. Yolov3: an incremental improvement; 2018, arXiv:1804.02767.
- [21] Chankong T, Theera-Umpon N, Auephanwiriyakul S. Automatic cervical cell segmentation and classification in pap smears. Comput Methods Programs Biomed 2014;113 (2):539–56.
- [22] Garcia-Gonzalez D, Garcia-Silvente M, Aguirre E. A multiscale algorithm for nuclei extraction in pap smear images. Expert Syst Appl 2016;64:512–22.
- [23] Sun G, Li S, Cao Y, Lang F. Cervical cancer diagnosis based on random forest. Int J Perform Eng 2017;13(4).
- [24] Kudva V, Prasad K, Guruvare S. Automation of detection of cervical cancer using convolutional neural networks. Crit Rev Biomed Eng 2018;46(2).
- [25] Asiedu MN, Simhal A, Chaudhary U, Mueller JL, Lam CT, Schmitt JW, et al. Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, pocket colposcope. IEEE Trans Biomed Eng 2018.
- [26] Bamford P, Lovell B. A water immersion algorithm for cytological image segmentation. Proc APRS Image Segmentation Workshop 1996;75–9.
- [27] Anantha Sivaprakasam S, Naganathan E. Segmentation and classification of cervical cytology images using morphological and statistical operations. ICTACT J Image Video Process 2017;7(3).
- [28] Tsai M-H, Chan Y-K, Lin Z-Z, Yang-Mao S-F, Huang P-C. Nucleus and cytoplast contour detector of cervical smear image. Pattern Recogn Lett 2008;29(9):1441–53.
- [29] Bergmeir C, Silvente MG, Benítez JM. Segmentation of cervical cell nuclei in high-resolution microscopic images: a new algorithm and a web-based software framework. Comput Methods Programs Biomed 2012;107(3):497–512.
- [30] Plissiti ME, Nikou C, Charchanti A. Automated detection of cell nuclei in pap smear images using morphological reconstruction and clustering. IEEE Trans Inform Technol Biomed 2010;15(2):233–41.
- [31] Li K, Lu Z, Liu W, Yin J. Cytoplasm and nucleus segmentation in cervical smear images using radiating Gvf snake. Pattern Recogn 2012;45(4):1255–64.
- [32] Guan T, Zhou D, Liu Y. Accurate segmentation of partially overlapping cervical cells based on dynamic sparse contour searching and GVF snake model. IEEE J Biomed Health Informatics 2014;19(4):1494–504.
- [33] Yarlagadda DVK, Rao P, Rao D, Tawfik O. A system for one- shot learning of cervical cancer cell classification in histopathology images. Medical Imaging 2019: Digital Pathology, vol. 10956; 2019. p. 1095611.
- [34] Wieslander H, Forslid G, Bengtsson E, Wahlby C, Hirsch J-M, Runow Stark C, et al. Deep convolutional neural networks for detecting cellular changes due to malignancy. Proceedings of the IEEE International Conference on Computer Vision 2017;82–9.
- [35] Song Y, Tan E-L, Jiang X, Cheng J-Z, Ni D, Chen S, et al. Accurate cervical cell segmentation from overlapping clumps in pap smear images. IEEE Trans Med Imaging 2016;36(1):288–300.
- [36] Lu Z, Carneiro G, Bradley A, Ushizima D, Nosrati MS, Bianchi A, et al. Evaluation of three algorithms for the segmentation of overlapping cervical cells. IEEE J Biomed Health Informatics 2017;PP(99):1.
- [37] Lu Z, Carneiro G, Bradley AP. An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE Trans Image Process 2015;24(4):1261–72.
- [38] Lu Z, Carneiro G, Bradley AP. Automated nucleus and cytoplasm segmentation of overlapping cervical cells. International Conference on Medical Image Computing and Computer-Assisted Intervention 2013;452–60.
- [39] Arya M, Mittal N, Singh G. Clustering techniques on pap-smear images for the detection of cervical cancer; 2018.
- [40] William W, Ware A, Basaza-Ejiri AH, Obungoloch J. Cervical cancer classification from pap-smears using an enhanced fuzzy c-means algorithm. Informatics Med Unlocked 2019;14:23–33.
- [41] Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, et al. Trainable weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 2017;33(15):2424–6.
- [42] Zhang L, Kong H, Chin CT, Liu S, Chen Z, Wang T, et al. Segmentation of cytoplasm and nuclei of abnormal cells in cervical cytology using global and local graph cuts. Comput Med Imaging Graph 2014;38(5):369–80.
- [43] Wang P, Wang L, Li Y, Song Q, Lv S, Hu X. Automatic cell nuclei segmentation and classification of cervical pap smear images. Biomed Signal Process Control 2019;48:93–103.
- [44] Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat: integrated recognition, localization and detection using convolutional networks; 2013, arXiv:1312. 6229.
- [45] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision 2015;115(3):211–52.
- [46] Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2014;580–7.
- [47] He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 2015;37(9):1904–16.
- [48] Girshick R. Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision 2015;1440–8.
- [49] Ren S, He K, Girshick R, Sun J. Faster r-cnn: towards real-time object detection with region proposal networks. Advances in neural information processing systems 2015;91–9.
- [50] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. Ssd, Single shot multibox detector. European Conference on Computer Vision 2016;21–37.
- [51] Jeong J, Park H, Kwak N. Enhancement of SSD by concatenating feature maps for object detection; 2017, arXiv:1705.09587.
- [52] Fu C-Y, Liu W, Ranga A, Tyagi A, Berg AC. DSSD: Deconvolutional single shot detector; 2017, arXiv:1701. 06659.
- [53] Dou Q, Chen H, Yu L, Zhao L, Qin J, Wang D, et al. Automatic detection of cerebral microbleeds from MR images via 3d convolutional neural networks. IEEE Trans Med Imaging 2016;35(5):1182–95.
- [54] Teramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: ensemble false-positive reduction using a convolutional neural network technique. Med Phys 2016;43(6Part1):2821–7.
- [55] Liang Y, Tang Z, Yan M, Liu J. Object detection based on deep learning for urine sediment examination. Biocybern Biomed Eng 2018;38(3):661–70.
- [56] Bharath R, Rajalakshmi P, Mateen MA. Multi-modal framework for automatic detection of diagnostically important regions in nonalcoholic fatty liver ultrasonic images. Biocybern Biomed Eng 2018;38(3):586–601.
- [57] Liang Y, Kang R, Lian C, Mao Y. An end-to-end system for automatic urinary particle recognition with convolutional neural network. J Med Syst 2018;42(9):165.
- [58] Wu M, Yan C, Liu H, Liu Q, Yin Y. Automatic classification of cervical cancer from cytological images by using convolutional neural network. Biosci Rep 2018;38(6).
- [59] Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition 2009;248–55.
- [60] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016;2818–26.
- [61] Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A. The Pascal visual object classes (VOC) challenge. Intl J Comput Vision 2010;88(2):303–38.
- [62] Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017;2117–25.
- [63] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016;770–8.
- [64] Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, et al. Speed/accuracy trade-offs for modern convolutional object detectors. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017;7310–1.
- [65] Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft coco: Common objects in context. European Conference on Computer Vision 2014;740–55.
- [66] Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017;1251–8.
- [67] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications; 2017, arXiv:1704. 04861.
- [68] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014, arXiv:1409.1556.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dbe28af0-dd86-4716-9537-35dc395b1a13