Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 9 | 116--132
Tytuł artykułu

An Investigation of Microplastic Occurrence and Heavy Metals Concentrations in Street Dust on the Left Side of Mosul City, Iraq

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The issue of street dust pollution is primarily related to levels of microplastic particles (MPs) and heavy metals, raising concerns about their potential risk to the environment. In this work, twenty street dust samples with three replicates were collected from different areas (residential, commercial, and industrial) on the left side of Mosul city/Iraq, to investigate the presence of MPs and study their characteristics. Additionally, to assess the potential ecological risk impact of twelve heavy metals. Among the 60 dust samples taken from the streets, an average of MPs ranging between 244 and 2760 per 15 grams of dust was detected. Most of these plastic particles were transparent fragments with sizes varying from less than 10 to 200 µm as observed through a stereomicroscope and a scanning electron microscope (SEM). Furthermore, results from FTIR analysis indicated that polyvinyl chloride (PVC) was the dominant polymer type found in MPs, accounting for around 63%. The levels of metal in road dust were assessed using X-ray fluorescence (XRF) showing that quantification of Cr, Ni, Cu, Zn, As, Sb, Hg, and Pb surpassed the background values of world soils among the twelve elements studied. Variation coefficients (VCs) coupled with enrichment and contamination factors revealed that Cr, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb are associated with both sources (anthropogenic and natural). On the other hand, Mn, Fe, and Ni originate from natural sources. Calculated potential ecological risk (Er) indicated high ecological risk by Hg. Approximately half of the samples exhibited moderate ecological risk indices (RI).
Wydawca

Rocznik
Strony
116--132
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Environmental Technologies, College of Environmental Science, University of Mosul, Mosul, 41002, Iraq
  • Department of Environmental Technologies, College of Environmental Science, University of Mosul, Mosul, 41002, Iraq, rashamhemid@uomosul.edu.iq
Bibliografia
  • 1. Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., and Sorooshian, A. 2017a. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran. Environmental Earth Sciences, 76(23).
  • 2. Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., and Sorooshian, A. 2017b. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran. Environmental Earth Sciences, 76(23).
  • 3. Abdullah, M.I.C., Md Sah, A.S.R., and Haris, H. 2020. Geoaccumulation index and enrichment factor of arsenic in surface sediment of bukit merah reservoir, Malaysia. Tropical Life Sciences Research, 31(3), 109–125.
  • 4. Abed, M.F., Altawash, B.S., and Ali, S.M. 2015. Zn (39.5-374.7), Ag (0.064-0.14), Ni (90.7-210), Co (12.8-26.6). Iraqi Journal of Science.
  • 5. Adachi, K., Tainosho, Y. 2004. Characterization of heavy metal particles embedded in tire dust. Environment International, 30(8), 1009–1017.
  • 6. Adimalla, N. 2020. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 42(1), 59–75.
  • 7. Aguilera, A., Cortés, J.L., Delgado, C., Aguilar, Y., Aguilar, D., Cejudo, R., Quintana, P., Goguitchaichvili, A., Bautista, F. 2022. Heavy Metal Contamination (Cu, Pb, Zn, Fe, and Mn) in Urban Dust and its Possible Ecological and Human Health Risk in Mexican Cities. Frontiers in Environmental Science, 10.
  • 8. Al-Radady, A.S., Davies, B.E., French, M.J. 1994. Distribution of lead inside the home: case studies in the North of England. The Science of the Total Environment.
  • 9. Andrady, A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin.
  • 10. Barbieri, M., 2016. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. Journal of Geology & Geophysics, 5(1).
  • 11. Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K.K., Prasad, M.V.R., Kanagasabapathy, K.V. 2015. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 137, 589–600.
  • 12. Dehghani, S., Moore, F., Akhbarizadeh, R. 2017a. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24(25), 20360–20371.
  • 13. Dehghani, S., Moore, F., Akhbarizadeh, R. 2017b. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environmental Science and Pollution Research, 24(25), 20360–20371.
  • 14. Duis, K., Coors, A. 2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe.
  • 15. Fiori, C. da S., Rodrigues, A.P. de C., Santelli, R.E., Cordeiro, R.C., Carvalheira, R.G., Araújo, P.C., Castilhos, Z.C., Bidone, E.D. 2013. Ecological risk index for aquatic pollution control: a case study of coastal water bodies from the Rio de Janeiro State, southeastern Brazil. Geochimica Brasiliensis, 27(1), 24–36.
  • 16. Fujiwara, F., Rebagliati, R.J., Marrero, J., Gómez, D., Smichowski, P. 2011. Antimony as a traffic-related element in size-fractionated road dust samples collected in Buenos Aires. Microchemical Journal, 97(1), 62–67.
  • 17. Hakanson, 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research. Sweden.
  • 18. Huang, Y., Qing, X., Wang, W., Han, G., Wang, J. 2020. Mini-review on current studies of airborne microplastics: Analytical methods, occurrence, sources, fate and potential risk to human beings. TrAC - Trends in Analytical Chemistry.
  • 19. Järlskog, I. 2022. Occurrence of traffic derived microplastics in different matrices in the road environment.
  • 20. Jiang, F., Ren, B., Hursthouse, A., Deng, R., Wang, Z. 2019. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environmental Science and Pollution Research, 26(16), 16556–16567.
  • 21. Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants, Fourth Edition.
  • 22. Liu, S., Peng, B., Li, J. 2022. Ecological Risk Evaluation and Source Identification of Heavy Metal Pollution in Urban Village Soil Based on XRF Technique. Sustainability (Switzerland), 14(9).
  • 23. Mon, E.E., Tun, T.Z., Agusa, T., Yeh, H.-M., Huang, C.-H., Nakata, H. 2022. Monitoring of microplastics in road dust samples from Myanmar and Taiwan. Environmental Monitoring and Contaminants Research, 2, 112–119.
  • 24. Monira, S., Bhuiyan, M.A., Haque, N., Shah, K., Roychand, R., Hai, F.I., Pramanik, B.K. 2021. Understanding the fate and control of road dust-associated microplastics in stormwater. Process Safety and Environmental Protection.
  • 25. Nwineewii, J.D., Edori, O.S., Onuchukwu, P.U.G. 2018. Concentration, ecological risk and enrichment factor assessment of selected heavy metals in sediments from New Calabar River, Nigeria. Journal of Applied Sciences and Environmental Management, 22(10), 1643.
  • 26. Ordóñez, A., Loredo, J., De Miguel, E., Charlesworth, S. 2003. Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain. Archives of Environmental Contamination and Toxicology, 44(2), 160–170.
  • 27. Pandey, D., Badola, N., Banerjee, T., Chauhan, J.S. 2022. Evidences of Microplastics in Air and Street Dust: A Case Study of Varanasi City, India.
  • 28. Rajaram, B.S., Suryawanshi, P.V., Bhanarkar, A.D., Rao, C.V.C. 2014. Heavy metals contamination in road dust in Delhi city, India. Environmental Earth Sciences, 72(10), 3929–3938.
  • 29. Ramaremisa, G., Tutu, H., Saad, D. 2024. Detection and characterisation of microplastics in tap water from Gauteng, South Africa. Chemosphere, 356.
  • 30. Rawat, M., Ramanathan, A., Subramanian, V. 2009. Quantification and distribution of heavy metals from small-scale industrial areas of Kanpur city, India. Journal of Hazardous Materials, 172 (2–3), 1145–1149.
  • 31. Saiyari, D., Anuran Griño, A., Marie Anselmo, A.C., Rafael Loyola, E.G., Lyn Medina, I.M., Niones Jr, E.P., Saiyari, D.M., n.d. Waste Polyvinyl Chloride (PVC) as Tensile Reinforcement to Asphalt Pavement Utilization of Waste Plastic Food Packaging with Impregnated Halloysite Nanotubes (HNTs) as Potential Building Material.
  • 32. Shen, F., Mao, L., Sun, R., Du, J., Tan, Z., Ding, M. 2019a. Contamination evaluation and source identification of heavy metals in the sediments from the lishui river watershed, southern China. International Journal of Environmental Research and Public Health, 16(3).
  • 33. Shen, F., Mao, L., Sun, R., Du, J., Tan, Z., Ding, M. 2019b. Contamination evaluation and source identification of heavy metals in the sediments from the lishui river watershed, southern China. International Journal of Environmental Research and Public Health, 16(3).
  • 34. Al Shurafi, R.M., Hussien, A.K., Al-Mallah, A.Y. 2023. Spatial distribution of heavy metals in the soil of different areas at a left bank in Mosul City, Iraq: Part 2. Iraqi National Journal of Earth Science, 23(1), 132–153.
  • 35. Sultan, M.H., Al-Ahmady, K.K., Mhemid, R.K.S. 2023. Microplastics Evaluation in Tap Water in Left Side Districts of Mosul City, Iraq. Journal of Ecological Engineering, 24(8), 353–362.
  • 36. Suryawanshi, P.V., Rajaram, B.S., Bhanarkar, A.D., Chalapati Rao, C.V. 2016a. Determining heavy metal contamination of road dust in Delhi, India. Atmosfera, 29(3), 221–234.
  • 37. Suryawanshi, P.V., Rajaram, B.S., Bhanarkar, A.D., Chalapati Rao, C.V. 2016b. Determining heavy metal contamination of road dust in Delhi, India. Atmosfera, 29(3), 221–234.
  • 38. Tüzen, M. 2003. Investigation of heavy metal levels in street dust samples in Tokat, Turkey. Journal of Trace and Microprobe Techniques, 21(3), 513–521.
  • 39. Wang, Q., Enyoh, C.E., Chowdhury, T., Chowdhury, A.H. 2022. Analytical techniques, occurrence and health effects of micro and nano plastics deposited in street dust. International Journal of Environmental Analytical Chemistry.
  • 40. Wuana, R.A., Okieimen, F.E. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, 2011, 1–20.
  • 41. Yang, C., Niu, S., Xia, Y., Wu, J. 2023. Microplastics in urban road dust: Sampling, analysis, characterization, pollution level, and influencing factors. TrAC Trends in Analytical Chemistry, 168, 117348.
  • 42. Yuan, G.-L., Sun, T.-H., Han, P., Li, J., Lang, X.X. 2014. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. Journal of Geochemical Exploration, 136, 40–47.
  • 43. Zhang, L., Liu, J. 2014. In situ relationships between spatial-temporal variations in potential ecological risk indexes for metals and the short-term effects on periphyton in a macrophyte-dominated lake: A comparison of structural and functional metrics. Ecotoxicology, 23(4), 553–566.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db7a074c-2daa-443c-9a45-a70267cc8e9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.