Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 21, no. 3 | 303--320
Tytuł artykułu

Crashworthiness-based multi-objective integrated optimization of electric vehicle chassis frame

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chassis frame of electric vehicle contains several thin-walled tube structures that can provide an important component for installing the power unit and supporting the body in white of vehicle. Thus, design a chassis frame is a multi-objective optimization and multi-parameter problem. To address it, the contributions of design variables to the performance indicators of chassis frame are studied first, and obtained the optimal design variables. The effects of the design parameters on the objective responses are analyzed based on a polynomial response surface model. Moreover, to determine optimal solution between the conflicting performance indicators of the chassis frame, an integrated approach based on lightweight and crashworthiness is presented to analysis the performance and determine the Pareto fronts. In addition, the optimal solution is acquired from the Pareto fronts by the grey relational analysis and game theory. Experiments corresponding to the numerical analysis are performed to verify the feasibility of the optimized strategy and the performance of the optimized chassis frame structure. Results show that according to the optimal parameters of chassis frame, the lightweight performance can be improved significantly, while the linear performance and crashworthiness performance of chassis frame are ensured.
Wydawca

Rocznik
Strony
303--320
Opis fizyczny
Bibliogr. 26 poz., fot., rys., wykr.
Twórcy
autor
  • State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, China
Bibliografia
  • [1] Prebeg P, Gasparovic G, Krajacic G, Duic N. Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles. Appl Energy. 2016;184:1493–507. https:// doi. org/ 10. 1016/j. apene rgy. 2016. 03. 086.
  • [2] Li Z, Duan LB, Cheng AG, Yao ZP, Chen T, Yao W. Light-weight and crashworthiness design of an electric vehicle using a six-sigma robust design optimization method. Eng Optim. 2019;51:1393–411. https:// doi. org/ 10. 1080/ 03052 15X. 2018. 15213 96.
  • [3] Chen W, Zuo W. Component sensitivity analysis of conceptual vehicle body for lightweight design under static and dynamic stiffness demands. Int J Veh Des. 2014;66:107–23. https:// doi. org/ 10. 1504/ IJVD. 2014. 064546.
  • [4] Wang D, Wang S, Xie C. A multi-objective optimization approach for simultaneously lightweighting and maximizing functional performance of vehicle body structure. Proc Inst Mech Eng Part D J Automob Eng. 2020;234:2086–102. https:// doi. org/ 10. 1177/ 09544 07019 868140.
  • [5] Wang D, Wang S. Multi-objective lightweight design of the container S-beam based on MNSGA-II with grey relational analysis. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019;233:3376–87. https:// doi. org/ 10. 1177/ 09544 06218 823802.
  • [6] Jiang R, Liu D, Wang D. Multi-objective optimization of vehicle dynamics performance based on entropy weighted TOPSIS method. J Mech Eng. 2018;54:150. https:// doi. org/ 10. 3901/ JME. 2018. 02. 150.
  • [7] Zhou P, Du J, Lu Z. Simultaneous topology optimization of supporting structure and loci of isolators in an active vibration isolation system. Comput Struct. 2018;194:74–85. https:// doi. org/ 10. 1016/j. comps truc. 2017. 09. 006.
  • [8] Asanjarani A, Dibajian SH, Mahdian A. Multi-objective crash-worthiness optimization of tapered thin-walled square tubes with indentations. Thin-Walled Struct. 2017;116:26–36. https:// doi. org/ 10. 1016/j. tws. 2017. 03. 015.
  • [9] Li Z, Zheng L, Ren Y, Li Y, Xiong Z. Multi-objective optimization of active suspension system in electric vehicle with In-Wheel-Motor against the negative electromechanical coupling effects. Mech Syst Signal Process. 2019;116:545–65. https:// doi. org/ 10. 1016/j. ymssp. 2018. 07. 001.
  • [10] Li Z, Su X, Tan J, Wang H, Wu WW. Multi-objective optimization of the layout of damping material for reducing thestructure-borne noise of thin-walled structures. Thin-Walled Struct. 2019;140:331–41. https:// doi. org/ 10. 1016/j. tws. 2019. 03. 046.
  • [11] Wang J, Shen W, Wang Z, Yao M, Zeng X. Multi-objective optimization of drive gears for power split device using surrogate models. J Mech Sci Technol. 2014;28:2205–14. https:// doi. org/ 10. 1007/ s12206- 014- 0509-4.
  • [12] Nariman-Zadeh N, Salehpour M, Jamali A, Haghgoo E. Pareto optimization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA). Eng Appl Artif Intell. 2010;23:543–51. https:// doi. org/ 10. 1016/j. engap pai. 2009. 08. 008.
  • [13] Fu S, Wang L, Du Y, Li Z, Zhu Z, Mao E. Application of improved NSGA-II algorithm in matching optimization for tractor power-train. ASABE Annu Int Virtual Meet. 2020. https:// doi. org/ 10. 13031/ aim. 20200 0374.
  • [14] Wang D, Cai K. Optimizing the static–dynamic performance of the body-in-white using a modified non-dominated sorting genetic algorithm coupled with grey relational analysis. Eng Optim. 2018;50:615–33. https:// doi. org/ 10. 1080/ 03052 15X. 2017. 13308 88.
  • [15] Shojaeefard MH, Hosseini SE, Zare J. CFD simulation and Pareto-based multi-objective shape optimization of the centrifugal pump inducer applying GMDH neural network, modified NSGA-II, and TOPSIS. Struct Multidiscip Optim. 2019;60:1509–25. https:// doi. org/ 10. 1007/ s00158- 019- 02280-0.
  • [16] Yu K, Liu Y, Zhang Z. Energy-absorbing analysis and reliability-based multiobjective optimization design of graded thickness B pillar with grey relational analysis. Thin-Walled Struct. 2019;145:106364. https:// doi. org/ 10. 1016/j. tws. 2019. 106364.
  • [17] Bhattacharya A, Singla S. Dissimilar GTAW between AISI 304 and AISI 4340 steel: multi-response optimization by analytic hierarchy process. Proc Inst Mech Eng Part E J Process Mech Eng. 2017;231:824–35. https:// doi. org/ 10. 1177/ 09544 08916 641458.
  • [18] Xiong F, Wang D, Chen S, Gao Q, Tian S. Multi-objective light-weight and crashworthiness optimization for the side structure of an automobile body. Struct Multidiscip Optim. 2018;58:1823–43. https:// doi. org/ 10. 1007/ s00158- 018- 1986-3.
  • [19] Luzon B, El-Sayegh SM. Evaluating supplier selection criteria for oil and gas projects in the UAE using AHP and Delphi. Int J Constr Manag. 2016;16:175–83. https:// doi. org/ 10. 1080/ 15623 599. 2016. 11461 12.
  • [20] Tiwari D, Sherwani AF, Muqeem M, Goyal A. Parametric optimization of organic Rankine cycle using TOPSIS integrated with entropy weight method. Energy Sources Part A Recover Util Environ Eff. 2019. https:// doi. org/ 10. 1080/ 15567 036. 2019. 16497 55.
  • [21] Saha A, Mondal SC. Multi-objective optimization in WEDM process of nanostructured hardfacing materials through hybrid techniques. Meas J Int Meas Confed. 2016;94:46–59. https:// doi. org/ 10. 1016/j. measu rement. 2016. 07. 087.
  • [22] Li N, Sheikh-Ahmad JY, El-Sinawi A, Krishnaraj V. Multi-objective optimization of the trimming operation of CFRPs using sensor-fused neural networks and TOPSIS. Meas J Int Meas Confed. 2019;132:252–62. https:// doi. org/ 10. 1016/j. measu rement. 2018. 09. 057.
  • [23] Shojaeefard MH, Khalkhali A, Firouzgan A. Multi-objective optimization of a natural aspirated three-cylinder spark ignition engine using modified non-dominated sorting genetic algorithm and multicriteria decision making. J Renew Sustain Energy. 2016. https:// doi. org/ 10. 1063/1. 49455 73.
  • [24] Annamdas KK, Rao SS. Multi-objective optimization of engineering systems using game theory and particle swarm optimization. Eng Optim. 2009;41:737–52. https:// doi. org/ 10. 1080/ 03052 15090 28221 41.
  • [25] Liu L, Xin Y, Wang W. Multi- objective topology optimization for an off- road vehicle frame based on compromise programming. Mech Sci Technol Aerosp Eng. 2011;30:6–9. https:// doi. org/ 10. 13433/j. cnki. 1003- 8728. 2011. 03. 033.
  • [26] Huh H, Kim SB, Song JH, Lim JH. Dynamic tensile characteristics of TRIP-type and DP-type steel sheets for an auto-body. Int J Mech Sci. 2008;50:918–31. https:// doi. org/ 10. 1016/j. ijmec sci. 2007. 09. 004.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db58e046-0e0e-4226-906d-de2edf30e712
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.