Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 4 | 241--246
Tytuł artykułu

Intelligent monitoring of PMSM based on adaptive fuzzy logic for diagnosis

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Inteligentne monitorowanie PMSM w oparciu o adaptacyjną logikę rozmytą do celów diagnostycznych
Języki publikacji
EN
Abstrakty
EN
In this paper, the fuzzy adaptive gain monitoring method (AGFLC) uses direct field-oriented control (DFOC) to monitor the speed of permanent magnet synchronous motors (PMSM). This surveillance strategy can detect the error of the velocity parameter, forcing the monitored system to achieve the desired reference model, and eliminating the velocity error. First, we examine the mathematical model describing the internal behavior of PMSM to design our system based on the priory physical model of the system. Then, we propose an intelligent method that combines a fuzzy control algorithm with its related control rules, aiming to monitor the speed of PMSM. This problem is solved by combining the two parameters of error and its variation. A fuzzy algorithm has proven to be an effective method to adjust the speed by suppressing disturbances. Furthermore, an adapted gain fuzzy controller, which provides a fast dynamic response without overshooting at various dynamic actions, has been suggested to compensate for all external disturbances. The obtained simulation results demonstrate the efficiency of the monitoring method for fault detection and localization and verify the performance of the adaptive algorithm control system.
PL
W tym artykule, rozmyta adaptacyjna metoda monitorowania wzmocnienia (AGFLC) wykorzystuje bezpośrednie sterowanie zorientowane na pole (DFOC) do monitorowania prędkości silników synchronicznych z magnesami trwałymi (PMSM). Ta strategia nadzoru może wykryć błąd parametru prędkości, zmuszając monitorowany system do osiągnięcia pożądanego modelu odniesienia i eliminując błąd prędkości. Najpierw badamy model matematyczny opisujący wewnętrzne zachowanie PMSM, aby zaprojektować nasz system w oparciu o priorytyczny model fizyczny systemu. Następnie proponujemy inteligentną metodę, która łączy algorytm kontroli rozmytej z powiązanymi z nim regułami kontroli, mającymi na celu monitorowanie prędkości PMSM. Problem ten jest rozwiązywany poprzez połączenie dwóch parametrów błędu i jego zmienności. Algorytm rozmyty okazał się być skuteczną metodą regulacji prędkości poprzez tłumienie zakłóceń. Ponadto do kompensacji wszystkich zakłóceń zewnętrznych zaproponowano regulator rozmyty o dostosowanym wzmocnieniu, który zapewnia szybką odpowiedź dynamiczną bez przekroczeń przy różnych akcjach dynamicznych. Uzyskane wyniki symulacji pokazują skuteczność metody monitorowania do wykrywania i lokalizacji uszkodzeń oraz weryfikują wydajność systemu sterowania z algorytmem adaptacyjnym.
Wydawca

Rocznik
Strony
241--246
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • University of M’sila, LGE Research Laboratory, Algeria
autor
  • University of Carthage, National Institute of Applied Sciences and Technology-LISI Lab, Tunisia
  • University of Carthage, National Institute of Applied Sciences and Technology-LISI Lab, Tunisia
Bibliografia
  • [1] Liu, X., and al., Research on the performances and parameters of interior PMSM used for electric vehicles. IEEE Transactions on Industrial Electronics, 63 (2016), No. 6, pp. 3533-3545.
  • [2] Bernadette, B-M., Logique floue, principes, aide à la décision. Lavoisier, 2003.
  • [3] Aissaoui A. G., and al., La commande adaptative par modéle de référence de la machine synchrone. Rev. Roum. Sci. Techn.–Électrotechn. et Énerg, 53 (2008), No.3, pp. 295-307.
  • [4] Uddin, M.N., Chy, M.M.I., A novel fuzzy-logic-controller-based torque and flux controls of rpm synchronous motor. IEEE Transactions on Industry Applications, 46 (2010), No. 3, pp. 1220–1229.
  • [5] Hamdi Pacha F.Z., Herizi A., Amri W., Benamor A., Design and Diagnosis of current faults in electrical power systems of permanent magnet synchronous machine, 5th International Conference on Advanced Systems and Emergent Technologies (IC ASET), Tunisia, 2022.
  • [6] Elwer, A.S., A novel technique for tuning pi-controllers ininduction motor drive systems for electric vehicle applications. Journal of Power Electronics, 6 (2006), No. 4, pp. 322–329.
  • [7] Hamdi Pacha F. Z., and al. Intelligent control based on adaptative fuzzy logic for permanent magnet synchronous machine. 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). IEEE, 2020. pp. 124-129.
  • [8] Lyonnet, P., Thomas, M., Toscano, R., Fiabilité, Diagnostic et Mainte- nance Prédictive Des systèmes. Ed. Tec & doc,. 2012.
  • [9] Zhao, J., and al., Comparative Study on Torque Performance of Five-phase Single-Stator and Double-Stator Permanent Magnet Synchronous Motors. CES Transactions on Electrical Machines and Systems, 6 (2022), No. 1, pp. 46-52.
  • [10] Trigeassou, J. C. (Ed.), Electrical machines diagnosis. John Wiley & Sons, 2013.
  • [11] Hazzab, A., and al. Real time implementation of fuzzy gain scheduling of PI controller for induction motor machine control. Neural Processing Letters, 2006, 24.3: 203-215.
  • [12] Feng, L., and al. Study on performance of low-speed high torque permanent magnet synchronous motor with dynamic eccentricity rotor. Energy Reports, 8 (2022), pp. 1421-1428.
  • [13] EL Ouanjli, N., and al. Modern improvement techniques of direct torque control for induction motor drives-a review. Protection and Control of Modern Power Systems, 2019, 4.1: 1-12.
  • [14] Wang, S. J., Fang, C. H., & Lin, S. K., A flux estimation method for a permanent-magnet synchronous motor. Journal of magnetism and magnetic materials, 282 (2004), 355-359.
  • [15] Mocanu, R., & One, A., Passivity-Based Torque Control of PMSM used in electrical vehicles. 19th International Conference on System Theory, Control, and Computing (ICSTCC), 2015, pp. 803-810.
  • [16] Khayamy, M., & Chaoui, H., Current sensorless MTPA operation of interior PMSM drives for vehicular applications. IEEE Transactions on Vehicular Technology, 67 (2018). No. 8, 6872-6881.
  • [17] Gallegos-Lopez, G., Gunawan, F.S., Walters, J.E, Current control of induction machines in the field-weakened region. IEEE Transactions on Industry Applications, 43 (2007), No. 4, 981–989.
  • [18] Chaoui, H., Okoye, O., Khayamy, M., Current sensorless mtpa for ipmsm drives. IEEE/ASME Transactions on Mechatronics,22 (2017), No. 4, 1585–1593.
  • [19] Jung, J.-W., Choi, Y.-S., Leu, V., Choi, H., Fuzzy pi-typecurrent controllers for permanent magnet synchronous motors. IET electric power applications, 5 (2011), No. 1, pp143–152.
  • [20] LI, Hu, and al., Adaptive fuzzy PI controller for permanent magnet synchronous motor drive based on predictive functional control. Journal of the Franklin Institute, 358 (2021), No. 15, pp. 7333-7364.
  • [21] Jiang, Qi, and al., Full state constraints and command filtering based adaptive fuzzy control for permanent magnet synchronous motor stochastic systems. Information Sciences,567 (2021), pp. 298-311.
  • [22] Michel, F., Ghribi, M., Kaddouri, A., Commande par logique floue d’un moteur synchrone à aimants permanents. 24th Canadian Conference on Electrical and Computer Engineering (CCECE), 2011, pp. 989–993.
  • [23] Mocanu, R., Onea, A., An adaptive control strategy for permanent magnet synchronous machines. International Symposium on Fundamentals of Electrical Engineering (ISFEE), (2018), pp. 1–6.
  • [24] Litcanu, M., Andea, P., Mihai, F.-I.F., Fuzzy logic controller for perma- next magnet synchronous machines. 13th International Symposium on Applied Machine Intelligence and Informatics (SAMI), 2015, pp. 261–265.
  • [25] Chen, Syuan-Yi, and al., Precision motion control of permanent magnet linear synchronous motors using adaptive fuzzy fractional-order sliding-mode control. IEEE/ASME Transactions on Mechatronics, 24 (2019), No. 2, pp. 741-752.
  • [26] Bendaas, I., Naceri, F., A new method to minimize the chattering phenomenon in sliding mode control based on intelligent control for induction motor drives. Serbian journal of electrical engineering, 10 (2013), No. 2, pp.231–246.
  • [27] Zadeh, L. A., Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A Zadeh. World Scientific, 76 (1996), pp. 394-432.
  • [28] Chaoui, H., Sicard, P., Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction. IEEE Transactions on Industrial Electronics, 59 (2011), No. 2, pp. 1123-1133.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db52e2a7-6f26-41ff-b0a8-95437d2382ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.