Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 16, no. 4 | 109--123
Tytuł artykułu

Analysis of application of gradient concrete models to assess concrete cover degradation under reinforcement corrosion

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a comparative analysis of the application of two nonlocal gradient-formulated models to evaluate the concrete cover degradation time. Calculations were made taking into account the increase in the volume of the steel ring around the perimeter of the reinforcement bar. The results of the calculations were compared with the results of experimental studies published in the literature and with the elastic-plastic model based on the Menetrey-Willam surface, in which the objectivity of the obtained results depends on the fracture energy. In addition, the paper compares solutions using different contact models and cohesion models.
Wydawca

Rocznik
Strony
109--123
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
  • PhD; Faculty of Civil Engineering, Częstochowa University of Technology, ul. Dąbrowskiego 69, Częstochowa, Poland
  • PhD, Associate Prof.; Faculty of Civil Engineering, Silesian University of Technology, ul. Akademicka 5, Gliwice, Poland, tomasz.krykowski@polsl.pl
Bibliografia
  • [1] Liu, Y. (1996). Modeling the Time-to-Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures (PhD thesis, Virginia Polytechnic Institute and State University), Blacksburg, VA, United States.
  • [2] Bazant, Z. P. (1979). Physical model for steel corrosion in concrete sea structures—application. Journal of the Structural Division, ASCE, 105(6), 1155–1166. https://doi.org/10.1061/JSDEAG.0005169.
  • [3] Pantazopoulou, S. J., & Papoulia, K. D. (2001). Modeling Cover-Cracking due to Reinforcement Corrosion in RC Structures. Journal of Engineering Mechanics, 127(4), 342–351. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(342)
  • [4] Jamali, A., Angst, U., Adey, B., & Elsener, B. (2013). Modeling of corrosion-induced concrete cover cracking: A critical analysis. Construction and Building Materials, 42, 225–237. https://doi.org/10.1016/j.conbuildmat.2013.01.019.
  • [5] Martín-Pérez, B. (1999). Service Life Modelling of R.C. Highway Structures Exposed to Chlorides (PhD Thesis, University of Toronto), Toronto, Canada.
  • [6] Molina, F. J., Alonso, C., & Andrade, C. (1993). Cover cracking as a function of rebar corrosion: Part 2 - Numerical model. Materials and Structures, 26(9), 532–548. https://doi.org/10.1007/BF02472864.
  • [7] Ožbolt, Joško, Oršanic, F., Gojko, B., & Kušte, M. (2012). Modeling damage in concrete caused by corrosion of reinforcement: coupled 3D FE model. International Journal of Fracture, 178, 233–244. https://doi.org/10.1007/s10704-012-9774-3.
  • [8] Wieczorek, B., & Krykowski, T. (2017). Zastosowanie reguł mechaniki uszkodzeń do oceny wzrostu odkształceń korozyjnych w warstwie przejściowej (Application of damage mechanics rules to evaluate the growth of corrosive deformations in transition layer). Ochrona Przed Korozją, 60(1), 5–8. https://doi.org/10.15199/40.2017.1.1.
  • [9] Krykowski, T., Jaśniok, T., Recha, F., & Karolak, M. (2020). A Cracking Model for Reinforced Concrete Cover, Taking Account of the Accumulation of Corrosion Products in the ITZ Layer, and Including Computational and Experimental Verification. Materials, 13(23), 5375. https://doi.org/10.3390/ma13235375.
  • [10] German, M., & Pamin, J. (2015). FEM simulations of cracking in RC beams due to corrosion progress. Archives of Civil and Mechanical Engineering. https://doi.org/10.1016/j.acme.2014.12.010.
  • [11] Pluciński, P. (2008). Numeryczna analiza efektów mechanicznych korozji stali zbrojeniowej w betonie (Numerical analysis of mechanical effects of rebar corrosion in concrete structures) (PhD thesis, Cracow University of Technology). Poland, Kraków.
  • [12] Cao, C., & Cheung, M. M. S. (2014). Non-uniform rust expansion for chloride-induced pitting corrosion in RC structures. Construction and Building Materials, 51, 75–81. https://doi.org/10.1016/j.conbuildmat.2013.10.042.
  • [13] Chauhan, A., & Sharma, U. K. (2021). Crack propagation in reinforced concrete exposed to non-uniform corrosion under real climate. Engineering Fracture Mechanics, 248, 107719. https://doi.org/10.1016/j.engfracmech.2021.107719.
  • [14] Alfano, G., & Crisfield, M. A. (2001). Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. International Journal for Numerical Methods in Engineering, 50(7). https://doi.org/10.1002/nme.93.
  • [15] Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. International Journal of Solids and Structures, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4.
  • [16] Červenka, J., & Papanikolaou, V. K. (2008). Three dimensional combined fracture-plastic material model for concrete. International Journal of Plasticity, 24(12), 2192–2220. https://doi.org/10.1016/j.ijplas.2008.01.004.
  • [17] Dai, L., Long, D., & Wang, L. (2021). Meso-scale modeling of concrete cracking induced by 3D corrosion expansion of helical strands. Computers and Structures, 254, 106615. https://doi.org/10.1016/j.compstruc.2021.106615.
  • [18] Zhang, Y., & Su, R. K. L. (2020). Corner cracking model for non-uniform corrosion-caused deterioration of concrete covers. Construction and Building Materials, 234, 117410. https://doi.org/10.1016/j.conbuildmat.2019.117410.
  • [19] Su, R. K. L., & Zhang, Y. (2019). A novel elastic-body-rotation model for concrete cover spalling caused by non-uniform corrosion of reinforcement. Construction and Building Materials, 213, 549–560. https://doi.org/10.1016/j.conbuildmat.2019.04.096.
  • [20] Baji, H. (2020). Stochastic modelling of concrete cover cracking considering spatio-temporal variation of corrosion. Cement and Concrete Research, 133, 106081. https://doi.org/10.1016/j.cemconres.2020.106081.
  • [21] Yurkova, K., & Krykowski, T. (2022). Modelowanie powstawania produktów korozji zbrojenia i ich wpływu na uszkodzenie otuliny betonowej (Modeling of the formation of reinforcement corrosion products and their impact on damage of the concrete cover). Inżynieria i Budownictwo, 78(9–10), 410–413.
  • [22] Seetharam, S. C., Laloy, E., Jivkov, A., Yu, L., Phung, Q. T., Pham, N. P., Kursten, B., & Druyts, F. (2019). A mesoscale framework for analysis of corrosion induced damage of concrete. Construction and Building Materials, 216, 347–361. https://doi.org/10.1016/j.conbuildmat.2019.04.252.
  • [23] Šavija, B., Luković, M., Pacheco, J., & Schlangen, E. (2013). Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study. Construction and Building Materials, 44, 626–638. https://doi.org/10.1016/j.conbuildmat.2013.03.063.
  • [24] Nguyen, T. T. H., Bary, B., & De Larrard, T. (2015). Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete. Cement and Concrete Research, 74, 95–107. https://doi.org/10.1016/j.cemconres.2015.04.008.
  • [25] Ožbolt, J., Balabanić, G., Periškić, G., & Kušter, M. (2010). Modelling the effect of damage on transport processes in concrete. Construction and Building Materials, 24(9), 1638–1648. https://doi.org/10.1016/j.conbuildmat.2010.02.028.
  • [26] Guzmán, S., Gálvez, J. C., & Sancho, J. M. (2012). Modelling of corrosion-induced cover cracking in reinforced concrete by an embedded cohesive crack finite element. Engineering Fracture Mechanics, 93, 92–107. https://doi.org/10.1016/j.engfracmech.2012.06.010.
  • [27] Guzmán, S., Gálvez, J. C., & Sancho, J. M. (2011). Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration. Cement and Concrete Research, 41(8), 893–902. https://doi.org/10.1016/j.cemconres.2011.04.008.
  • [28] Jin, H., & Yu, S. (2022). Study on corrosion-induced cracks for the concrete with transverse cracks using an improved CDM-XFEM. Construction and Building Materials, 318, 126173. https://doi.org/10.1016/j.conbuildmat.2021.126173.
  • [29] Zreid, I., & Kaliske, M. (2014). Regularization of microplane damage models using an implicit gradient enhancement. International Journal of Solids and Structures, 51(19–20). https://doi.org/10.1016/j.ijsolstr.2014.06.020.
  • [30] Zreid, I., & Kaliske, M. (2018). A gradient enhanced plasticity–damage microplane model for concrete. Computational Mechanics, 62(5). https://doi.org/10.1007/s00466-018-1561-1.
  • [31] Bažant, Z. P., & Gambarova, P. G. (1984). Crack Shear in Concrete: Crack Band Microplane Model. Journal of Structural Engineering, 110(9). https://doi.org/10.1061/(asce)0733-9445(1984)110:9(2015).
  • [32] Bažant, Z. P., & Prat, P. C. (1988). Microplane Model for Brittle Plastic Material: I. Theory. Journal of Engineering https://doi.org/10.1061/(asce)0733-9399(1988)114:10(1672).
  • [33] ANSYS Inc. (2023). Material Reference, Canonsburg, USA.
  • [34] De Vree, J. H. P., Brekelmans, W. A. M., & van Gils, M. A. J. (1995). Comparison of nonlocal approaches in continuum damage mechanics. Computers & Structures, 55(4), 581–588. https://doi.org/10.1016/0045-7949(94)00501-S.
  • [35] Pamin, J. (2004). Gradient-enhanced continuum models: formulation, discretization and application. Cracow University of Technology.
  • [36] Wosatko, A. (2021). Comparison of evolving gradient damage formulations with different activity functions. Archive of Applied Mechanics, 91(2), 597–627. https://doi.org/10.1007/s00419-021-01889-2.
  • [37] The International Federation for Structural Concrete FIB. (2013). FIB Model Code for Concrete Structures 2010. In J. Walraven (Ed.), 2013 fédération internationale du béton/International Federation for Structural Concrete (fib). https://doi.org/10.1002/9783433604090.
  • [38] Jiang, H., & Zhao, J. (2015). Calibration of the continuous surface cap model for concrete. Finite Elements in Analysis and Design, 97, 1–19. https://doi.org/10.1016/j.finel.2014.12.002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db384ed2-b548-490e-955c-2b1369384da4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.