Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 6 | 86--96
Tytuł artykułu

The Optimizing the Vehicle Selection Decision in Carsharing Systems

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Balancing mobility is now a very important part of urban development. The need for change and the change in residents' attitudes toward private vehicle ownership mean that carsharing can play an important role in the functioning of urban areas. Carsharing systems provide a number of benefits both collectively and individually. First and foremost, they free up space. Just one car-sharing vehicle can replace the ownership of 8 to as many as 19 cars in private use, thereby "freeing up" 80-190 sqm of space each time. In addition, sharing vehicles in lieu of owning them has a positive impact on the environment, reducing noise and exhaust emissions. Studies show that demand for carsharing services will increase if the fleet of "cars for minutes" consists of electric cars. Hence, in this paper, taking advantage of the research gap related to the procedure for the proper selection of vehicles for carsharing, the use of vehicles with different types of propulsion including electric, was evaluated from economic, technical and environmental perspectives. The selection of vehicles has been classified as a multi-faceted, complex problem, so this study used one of Maja multi-criteria decision support methods. Five vehicles of the same model and brand, each with a different type of propulsion system, belonging to the C market segment, the most popular in carsharing systems in Poland, were considered. The results indicate that under current conditions, an electric car is not the optimal solution. Only when environmental issues have been taken into account does an electric vehicle, represent the best solution. The proposed method and the obtained results can be used by, among others, carsharing operators to organize or modernize their vehicle fleets.
Wydawca

Rocznik
Strony
86--96
Opis fizyczny
Bibliogr. 81 poz., fig., tab.
Twórcy
  • Faculty of Management and Computer Modelling, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, Kielce, Poland, esendek@tu.kielce.pl
Bibliografia
  • 1. Millard-Ball A., Murray G., Schure J.T., Fox Ch., Burkhardt J. Car – Sharing: Where and how it succeeds. TCRP Report108. Transportation Research Board. 2005.
  • 2. Pokorzyński M. How much does annual car maintenance cost? The amount may surprise you. Two variants were tested, Auto Świat. 2023. https://www.auto-swiat.pl/wiadomosci/aktualnosci/ile-kosztuje-roczne-utrzymanie-auta-kwota-moze-zaskoczyc-sprawdzo-no-dwa-warianty/ynxt00j (Accessed:20.03.2024).
  • 3. Cohen A.P., Shaheen S., Kenzie R. Carsharing: A guide for local planners. Institute of Transportation Studies. 2008.
  • 4. Janczewski J. Rental as a form of car sharing. Selected issues. Zarządzanie Innowacyjne w Gospodarce i Biznesie. 2015, 2(21), 86–101.
  • 5. Sioui, L., Morency, C., Trépanier M. How carsharing affects the travel behavior of households: A case study of Montréal, Canada. International Journal of Sustainable Transportation. 2012, 7(1), 52–69. http://dx.doi.org/10.1080/15568318.2012.660109.
  • 6. Clark M., Gifford K., Anable J., Le Vine S. Business-to-business carsharing: evidence from Britain of factors associated with employer-based carsharing membership and its impacts. Transportation. 2015, 42(3), 471–495.
  • 7. Costain C., Ardron C., Habib K.N. Synopsis of users’ behavior of a carsharing program: A case study in Toronto. Transportation Research Part A: Policy and Practice. 2012, 46(3), 421–434. https://doi.org/10.1016/j.tra.2011.11.005.
  • 8. De Lorimier A., El-Geneidy A.M. Understanding the factors affecting vehicle usage and availability in carsharing networks: A case study of Communautaire sharing system from Montréal, Canada. International Journal of Sustainable Transportation. 2013, 7(1), 35–51. http://dx.doi.org/10.1080/15568318.2012.660104.
  • 9. Loose W., Mohr M., Nobis C. Assessment of the future development of car sharing in Germany and related opportunities. Transport Reviews. 2006, 26(3), 365–382. http://dx.doi.org/10.1080/01441640500495096.
  • 10. Wu C., Le Vine S., Clark M., Gifford K., Polak J. Factors associated with round-trip carsharing requency and driving-mileage impacts in London. International Journal of Sustainable Transportation. 2019, 14(17), 1–10. http://dx.doi.org/10.1080/15568318.2018.1538401.
  • 11. Ruhrort L., Steiner J., Graff A., Hinkeldein D., Hoffmann C. Car sharing with electric vehicles in the context of users’ mobility needs - Results from user centre research from the be mobility field trial (Berlin). International Journal of Automotive Technology and Management. 2014, 14(3–4), 286–305. http://dx.doi.org/10.1504/IJATM.2014.065294.
  • 12. Namazu M., Mackenzie D., Zerriffi H., Dowlatabadi H. Is carsharing for everyone? Understanding the diffusion of car sharing servces. Transport Policy. 2018, 63(1), 189–199. https://doi.org/10.1016/j.tranpol.2017.12.012.
  • 13. Ko J., Ki H., Lee, S. Factors affecting carsharing program participants’ car ownership changes. Transportation Letters. 2019, 11(4), 208–218. https://doi.org/10.1080/19427867.2017.1329891.
  • 14. Mallus M., Colistra G., Atzori L., Murroni M., Pilloni V. Dynamic carpooling in urban areas: design and experimentation with a multi-objective route matching algorith. Sustainability. 2017, 9(2), 254. https://doi.org/10.3390/su9020254.
  • 15. Basiago A.D. The search for the sustainable city in 20th century urban planning, Environmentalist. 1996, 16, 135–155.
  • 16. Fleury S., Tom A., Jamet E., Colas-Maheux E. What drives corporate car sharing acceptance? A French case study. Transportation Research Part F: Traffic Psychology and Behaviour. 2017, 45, 218–227. https://doi.org/10.1016/j.trf.2016.12.004.
  • 17. Münzel K., Boon W., Frenken K., Blomme J., van der Linden D. Explaining carsharing supply across Western European cities. International Journal of Sustainable Transportation. 2020, 14(4), 243–254. https://doi.org/10.1080/15568318.2018.1542756.
  • 18. Kim J., Rasouli S., Timmermans H.J.P. The effects of activity-travel context and individual attitudes on car-sharing decisions under travel time uncertainty: A hybrid choice modeling approach. Transportation Research Part D: Transport and Environment. 2017, 56, 189–202. https://doi.org/10.1016/j.trd.2017.07.022.
  • 19. Bocken N., Jonca A., Södergren K., Palm J. Emergence of Carsharing Business Models and Sustainability Impacts in Swedish Cities. Sustainability. 2020, 12(4), 1594. https://doi.org/10.3390/su12041594.
  • 20. Alencar V.A., Rooke F., Cocca M., Vassio L., Almeida J., Vieira A.B. Characterizing client usage patterns and service demand for car-sharing systems. Information Systems. 2021, 101448. https://doi.org/10.1016/j.is.2019.101448.
  • 21. Hofmann E., Hartl B., Penz E. Power versus trust – what matters more in collaborative consumption? Journal of Services Marketing. 2017, 31(10), 589–603. http://dx.doi.org/10.1108/JSM-09-2015-0279.
  • 22. Meelen T., Frenken K., Hobrink S. Weak spots for car-sharing in The Netherlands? The geography of socio-technical regimes and the adoption of niche innovations. Energy Research & Social Science. 2019, 52, 132–143.
  • 23. Hahn R., Ostertag F., Lehr A., Büttgen M., Benoit S. I like it, but I don’t use it: Impact of carsharing business models on usage intentions in the sharing economy. Business Strategy and the Environment. 2020, 29(3), 1404–1418. https://doi.org/10.1002/bse.2441.
  • 24. Barbour N., Zhang Y., Mannering F. Individuals’ willingness to rent their personal vehicle to others: An exploratory assess-ment of peer-to-peer carsharing. Transportation Research Interdisciplinary Perspectives. 2020, 5, 100138. https://doi.org/10.1016/j.trip.2020.100138.
  • 25. Nitschke L. Reconstituting automobility: The influence of non-commercial carsharing on the meanings of automobility and the car. sustainability. 2020, 12(17), 7062. http://dx.doi.org/10.3390/su12177062.
  • 26. Moeller S., Wittkowski K. The burdens of ownership: reasons for preferring renting. Managing Service Quality: An International Journal. 2010, 20(2), 176–191. http://dx.doi.org/10.1108/09604521011027598.
  • 27. Peterson M., Simkins T. Consumers’ processing of mindful commercial car sharing, Business Strategy and the Environment. 2019, 28(3), 457–465. http://dx.doi.org/10.1002/bse.2221.
  • 28. Chun Y.Y., Matsumoto M., Tahara K., Chinen K., Endo H. Exploring factors affecting car sharing use intention in the Southeast-Asia region: A Case Study in Java, Indonesia. Sustainability. 2019, 11(18), 5103. https://doi.org/10.3390/su11185103.
  • 29. Boldrini C., Bruno R., Laarabi M.H. Weak signals in the mobility landscape: car sharing in ten European cities. EPJ Data Science. 2019, 8(7). https://doi.org/10.1140/epjds/.
  • 30. Mugion R.G., Toni M., Di Pietro L., Pasca, M.G., Renzi M.F. Understanding the antecedents of car sharing usage. An empirical study in Italy. International Journal of Quality and Service Sciences. 2019. http://dx.doi.org/10.1108/IJQSS-02-2019-0029.
  • 31. Hjorteset M.A., Böcker L. Car sharing in Norwegian urban areas: Examining interest, intention and the decision to enroll. Transportation research part D: transport and environment. 2020, 84, 102322. https://doi.org/10.1016/j.trd.2020.102322.
  • 32. Valor C. Anticipated emotions and resistance to innovations: the case of p2p car sharing. Environmental Innovation and Societal Transitions. 2020, 37, 50–65. https://doi.org/10.1016/j.eist.2020.08.001.
  • 33. Zhang Y., Li L. Intention of Chinese college students to use carsharing: An application of the theory of planned behavior. Transportation Research Part F: Traffic Psychology and Behavior. 2020, 75, 106–119. https://doi.org/10.1016/j.trf.2020.09.021.
  • 34. Charoniti E., Kim J., Rasouli S., Timmermans H.J. Intrapersonal heterogeneity in car-sharing decisionmaking processes by activity-travel contexts: a context-dependent latent class random utility–random regret model. International Journal of Sustainable Transportation. 2020, 15(7), 501–511. https://doi.org/10.1080/15568318.2020.1768608
  • 35. Lagadic M., Verloes A., Louvet, N. Can car sharing services be profitable? A critical review of established and developing business models. Transport Policy. 2019, 77(3), 68–78. http://dx.doi.org/10.1016/j.tranpol.2019.02.006.
  • 36. Ampudia-Renuncio M., Guirao B., Molina-Sánchez R., de Alvarez C.E. Understanding the spatial distribution of free-floating carsharing in cities: analysis of the new Madrid experience through a webbased platform. Cities. 2020, 98, 102593. https://doi.org/10.1016/j.cities.2019.102593.
  • 37. Carrone A.P., Hoening V.M., Jensen A.F., Mabit S.E., Rich J. Understanding car sharing preferences and mode substitution patterns: a stated preference experiment. Transport Policy. 2020, 98, 139–147. https://doi.org/10.1016/j.tranpol.2020.03.010.
  • 38. Wilhelms M.P., Henkel S., Falk T. To earn is not enough: a means-end analysis to uncover peerproviders’ participation motives in peer-to-peer carsharing. Technological Forecasting and Social Change. 2017, 125, 38–47. https://doi.org/10.1016/j.techfore.2017.03.030.
  • 39. Ma F., Guo D., Yuen K.F., Sun Q., Ren F., Xu X., Zhao C. The influence of continuous improvement of public car-sharing platforms on passenger loyalty: a mediation and moderation analysis. International Journal of Environmental Research and Public Health. 2020, 17(8), 2756. https://doi.org/10.3390/ijerph17082756.
  • 40. Bardhi F., Eckhardt G.M. Access-based consumption: the case of car sharing. Journal of Consumer Research. 2012, 39(4), 881–898. http://dx.doi.org/10.1086/666376.
  • 41. Nair R., Miller-Hooks E. Fleet management for vehicle sharing operations. Transportation Science. 2011, 45(4), 524–540. http://www.jstor.org/stable/41432818.
  • 42. Moein E., Awasthi A. Carsharing customer demand forecasting using causal, time series and neural network methods: a case study, International Journal of Services and Operations Management. 2020, 35(1), 36–57. http://dx.doi.org/10.1504/IJSOM.2020.10026105.
  • 43. Hua Y., Zhao D., Wang X., Li X. Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand. Transportation Research Part B: Methodological. 2019, 128, 185–206. https://doi.org/10.1016/j.trb.2019.07.005.
  • 44. Hu S., Chen P., Lin H., Xie C., Chen X. Promoting carsharing attractiveness and efficiency: an exploratory analysis. Transportation Research Part D: Transport and Environment. 2018, 65, 229–243. https://doi.org/10.1016/j.trd.2018.08.015.
  • 45. Balac M., Becker H., Ciari F., Axhausen K.W. Modeling competing free-floating carsharing operators–A case study for Zurich, Switzerland. Transportation Research Part C: Emerging Technologies. 2019, 98, 101–117. https://doi.org/10.1016/j.trc.2018.11.011.
  • 46. Repoux M., Kaspi M., Boyacı B., Geroliminis N. Dynamic prediction-based relocation policies in one-way station-based car-sharing systems with complete journey reservations. Transportation Research Part B: Methodological. 2019, 130, 82–104. https://doi.org/10.1016/j.trb.2019.10.004.
  • 47. Kypriadis, D., Pantziou, G., Konstantopoulos C., Gavalas D. Optimizing relocation cost in free-floating car-sharing systems. IEEE Transactions on Intelligent Transportation Systems. 2020, 21(9), 4017–4030. http://dx.doi.org/10.1109/TITS.2020.2995197.
  • 48. Caggiani L., Prencipe L.P., Ottomanelli M.A static relocation strategy for electric car-sharing systems in a vehicle-to-grid framework. Transportation Letters. 2021, 13(3), 219–228. https://doi.org/10.1080/19427867.2020.1861501.
  • 49. Brendel A.B., Lichtenberg S., Brauer B., Nastjuk I., Kolbe L.M. Improving electric vehicle utilization in carsharing: A frame-work and simulation of an e-car sharing vehicle utilization management system. Transportation Research Part D: Transport and Environment. 2018, 64, 230–245. https://doi.org/10.1016/j.trd.2018.01.024.
  • 50. Bruglieri M., Colorni A., Luè A.The relocation problem for the one‐way electric vehicle sharing. Networks. 2014, 64(4), 292–305. http://dx.doi.org/10.1002/net.21585.
  • 51. Deza A., Huang K., Metel M.R. Charging station optimization for balanced electric car sharing. Discrete Applied Mathematics. 2020, 308, 187–197. https://doi.org/10.1016/j.dam.2020.01.042.
  • 52. Lu X., Zhang Q., Peng Z., Shao Z., Song H., Wang W. Charging and relocating optimization for electric vehicle car-sharing: Anevent-based strategy improvement approach. Energy. 2020, 207, 118285. https://doi.org/10.1016/j.energy.2020.118285.
  • 53. Wang N., Guo J., Liu X., Liang Y., Electric vehicle car-sharing optimization relocation model combining user relocation and staff relocation. Transportation Letters. 2021, 13(4), 315–326. https://doi.org/10.1080/19427867.2020.1728843.
  • 54. Weikl S., Bogenberger K. A practice-ready relocation model for free-floating carsharing systems with electric vehicles – Mesoscopic approach and field trial results. Transportation Research Part C: Emerging Technologies. 2015, 57, 206–223. https://doi.org/10.1016/j.trc.2015.06.024.
  • 55. Tran V., Zhao S., Diop E.B., Song W. Travelers’ acceptance of electric carsharing systems in developing countries: the case of China. Sustainability. 2019, 11(19), 5348. https://doi.org/10.3390/su11195348.
  • 56. Cartenì A., Cascetta E., de Luca S. A random utility model for park & carsharing services and the purepreference for electric-vehicles. Transport Policy. 2016. 48(1), 49–59. http://dx.doi.org/10.1016/j.tranpol.2016.02.012.
  • 57. Firnkorn J., Müller M.Free-floating electric carsharing-fleets in smart cities: The dawning of a postprivate car era in urban environments?. Environmental Science & Policy. 2015, 45, 30–40. https://doi.org/10.1016/j.envsci.2014.09.005.
  • 58. Schwabe J. The evolution of cooperative electric carsharing in Germany and the role of intermediaries. Environmental Innovation and Societal Transitions. 2020, 37, 108–119. https://doi.org/10.1016/j.eist.2020.08.007.
  • 59. Jacquillat A., Zoepf S. Deployment and utilization of plug-in electric vehicles in round-trip carsharing systems. International Journal of Sustainable Transportation. 2018, 12(2), 75–91. https://doi.org/10.1080/15568318.2017.1328624.
  • 60. Turoń K. Multi-criteria decision analysis when selecting vehicles for car-sharing services - regular users’ expectations. Energies. 2022, 15(19), 7277. https://doi.org/10.3390/en15197277.
  • 61. Turoń K. Selection of car models with classic and alternative drive for car-sharing services from the system’s rare users perspective. Energies. 2022, 15(9), 6876. https://doi.org/10.3390/en15196876.
  • 62. Turoń K. Choosing a fleet of carsharing vehicles from the point of view of a frequent user. Energie. 2022, 15(17), 6166. https://doi.org/10.3390/en15176166.
  • 63. Peugeot. https://www.peugeot.pl/(Accessed: 27.04.2024).
  • 64. Chargemap. https://chargemap.com/about/stats/poland (Accessed: 22.04.2024).
  • 65. inwestycje pl. https://inwestycje.pl/ (Accessed: 27.04.2024).
  • 66. motonews.pl. https://www.motonews.pl/auta-nowe/auto-14867-peugeot-308.html (Accessed:26.04.2024).
  • 67. Auto Centrum. https://www.autocentrum.pl/dane-techniczne/peugeot/308/iii/hatchback-plug-in/silnik-hybrydowy-1.6-hybrid-180km-od-2021/(Accessed: 19.04.2024).
  • 68. Switch2Zero.https://www.switch2zero.com/car-bon-vehicle/identify (Accessed: 24.04.2024).
  • 69. Car Labelling. https://carlabelling.ademe.fr/recherche?searchString=&co2=&brand=peugeot&model=308&category=&range=&carbu%5B%5D=EL&transmission=&price=0%2C500000&maxconso=&energy=0%2C7&RechercherL=Rechercher&offset=0&orderby[]=particules%20desc&searchString (Accessed:28.04.2024).
  • 70. Transport & Environment. https://www.transportenvironment.org/wp-content/uploads/2023/02/2023_02_TE_PHEV_Testing_2022_TU_Graz_report_final.pdf(Accessed: 24.04.2024).
  • 71. Jacyna M., Kakietek S., Przygocki M., Multi-criteria modeling of traffic flow distribution in a multimodal transport corridor. Vol. II – assessment of the adaptation of infrastructure to tasks. Prace Naukowe Politechniki Warszawskiej. Seria Transport. 2004, 52.
  • 72. Jacyna M., Multi-criteria modeling applied to the assessment of transport systems. Prace Naukowe PW. Seria Transport. 2001, 47.
  • 73. Jacyna M., Someaspects of multicriteria evaluation of traffic flow distribution in a multimodal transport corridor. Archives of Transport. 1998, 10(1–2), 37–52.
  • 74. Goswami T., Pająk M., Skrzypiński W., Biocompatibility of selected extractants in the continuous extractive ethanol fermentation. Inż. Chem. Proc. 2009, 21, 645–655.
  • 75. Ambroziak T., Lewczuk K. Multi-criteria method used to assess the configuration of a storage zone. Automatyka. 2009,13(2).
  • 76. Jacyna M., Turkowski D. Selected aspects of multi-criteria assessment of the selection of means of transport in vehicle distribution systems. Logistyka, 2014, 4.
  • 77. Jacyna M. Modeling and evaluation of transport systems. Oficyna Wydawnicza Politechniki Warszawskiej. 2009.
  • 78. Pyza D. Multicriteria Evaluation of Designing Transportation /System within Distribution Sub-Systems. Logistics and Transport. 2010, 10(1), 25–34.
  • 79. Małachowski J., Ziółkowski J., Mateusz Oszczypała M., Szkutnik-Rogoż J., Lęgas A. Asessment of options to meet transport needs using the Maja multicriteria method. Archives of transport, 2021, 57(1). http://dx.doi.org/10.5604/01.3001.0014.7482.
  • 80. Sendek-Matysiak E. Multi-criteria analysis and expert assessment of vehicles with different drive types regarding their functionality and environmental impact. Scientific Journal of Silesian University of Technology. 2019, 102, 185–195. https:// 10.20858/sjsutst.2019.102.15.http://dx.doi.org/10.20858/sjsutst.2019.102.15.
  • 81. Jacyna M., Wasiak M. A multi-criteria method for assessing variants of implementing infrastructure investments in transport. Prace Naukowe Politechniki Warszawskiej. Seria: Transport. 2007, 63, 119–124.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db174f50-fb38-4030-82b3-11a5773d3293
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.