Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 7 | 332--339
Tytuł artykułu

Study of Sowing Quality of Soybean Seeds Depending on Pre-Sowing Treatment of Seed

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Comprehensive assessment of sowing qualities of soybean seeds after pre-sowing treatment of seeds with biological preparations is a scientifically valuable and urgent problem of today, which made it possible to choose the optimal methods of realizing the genetic potential of productivity of modern soybean varieties. In laboratory and vegetation conditions, the sowing properties of soybean seeds were evaluated under pre-sowing seed sterilization. The aim of the research was to establish the sowing qualities of soybean seeds (varieties Slavna, Churaivna, Azymut, Tytan, Triada, Pallada, Samorodok), namely seed moisture, germination energy, f ield germination and linear hypocotyl parameters depending on the varietal composition and pre-sowing seed treatment with a bacterial preparation. Field and laboratory studies were conducted according to the following indicators: seed moisture, germination energy, field germination and linear hypocotyl parameters according to generally accepted methods. Research on the basis of the scientific research field of the Institute of Fodder and Agriculture of the Podillia National Academy of Sciences by the method of split plots in four repetitions according to the methodology of research in agronomy, p. Bohonyky, Vinnytsia region, Ukraine. It was established that the moisture content of the seeds of soybean varieties during 2020–2023 storage in uncontrolled climate conditions was within the normal range and did not exceed 13.4%. It was noted that the use of pre-sowing treatment of seeds with a bacterial preparation based on strains of nodule bacteria had a smaller effect on laboratory germination, and to a greater extent on the germination energy of soybean seeds. The maximum indicator was obtained on the Slavna soybean variety–93.4% for the use of nitrogen-fixing bacteria (Rhizoline+Rhizosave) in the presowing treatment of seeds. Laboratory germination had a significant tendency to increase up to 96.3–98.1% in variants with Svavna and Tytan varieties for the use of nitrogen-fixing bacteria (Rizolain+Rhizosave) in the presowing seed treatment. Based on the obtained results, in order to stimulate the germination of soybean seeds, it is proposed to bacteriize them with complex inoculants, which is a more effective measure than inoculation with a monoculture of rhizobia. In the conditions of the Right Bank Forest-Steppe, in the variants where a bacterial preparation (Rizolain+Rhizosev) was used for pre-sowing seed treatment, the mentioned technological methods of growing can be used to improve the technology of growing soybeans.
Wydawca

Rocznik
Strony
332--339
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Institute of Feed Research and Agriculture of Podillya of NAAS, Av. Yunosti 16, 21021 Vinnytsia, Ukraine, v.petrychenko@ukr.net
  • Institute of Feed Research and Agriculture of Podillya of NAAS, Av. Yunosti 16, 21021 Vinnytsia, Ukraine, Korniychuk@ukr.net
  • Lviv National Environmental University, Str. Vladimir the Great, 1 m. Dubliany Lviv region, Lviv, 80381 Ukraine, LYKHOCHVOR@ukr.net
  • Institute of Feed Research and Agriculture of Podillya of NAAS, Av. Yunosti 16, 21021 Vinnytsia, Ukraine, Kobak@ukr.net
  • Institute of Feed Research and Agriculture of Podillya of NAAS, Av. Yunosti 16, 21021 Vinnytsia, Ukraine, opantsyrev@gmail.com
Bibliografia
  • 1. Alaru, M., Talgre, L., Eremeev, V., Tein, B., Luik, A., Nemvalts, A., Loit, E. 2014. Crop yields and supply of nitrogen compared in conventional and organic farming systems. Agricultural and Food Science, 23(4), 317–326. https://doi.org/10.23986/afsci.46422
  • 2. Babich, A.O., Petrychenko, V.F., Kulyk, M.F., Makarenko, P.S. 1998. Methods of conducting experiments on fodder production and animal feeding. Kyiv: Agrarian Science, 78.
  • 3. Bakhmat, M., Padalko, T., Krachan, T., Tkach, O., Pantsyreva, H., Tkach, L. 2023. Formation of the Yield of Matricaria recutita and Indicators of Food Value of Sychorium intybus by Technological Methods of Co-Cultivation in the Interrows of an Orchard. Journal of Ecological Engineering, 24(8), 250–259. https://doi.org/10.12911/22998993/166553
  • 4. Dumpis, J., Lagzdins, A., Sics, I. 2021. Delineation of catchment area for the lake Kisezers for environmental sustainability. Agronomy Research, 19(4), 1718–1733. https://doi.org/10.15159/AR.21.137
  • 5. Giampieri, F., Mazzoni, L., Cianciosi, D., AlvarezSuarez, J.M., Regolo, L., SánchezGonzález, C., Capocasa, F., Xiao, J., Mezzetti, B., Battino, M. 2022. Organic vs conventional plant-based foods: A review. Food Chemistry, 383(December 2021). https://doi.org/10.1016/j.foodchem.2022.132352
  • 6. Hnatiuk, T.T., Zhitkevich, N.V., Petrychenko, V.F., Kalinichenko, A.V., Patyka V.P. 2019. Soybean diseases caused by genus Pseudomonas Phytopathenes bacteria. Mikrobiol. Z., 81(3), 68–83. https://doi.org/10.15407/microbiolj81.03.068
  • 7. Jansson, T., Andersen, H.E., Gustafsson, B.G., Hasler, B., Höglind, L., Choi, H. 2019. Baltic Sea eutrophication status is not improved by the first pillar of the European Union Common Agricultural Policy. Regional Environmental Change, 19(8), 24652476. https://doi.org/10.1007/s10113-019-01559-8
  • 8. Keres, I., Alaru, M., Eremeev, V., Talgre, L., Luik, A., Loit, E. 2020. Long-term effect of farming systems on the yield of crop rotation and soil nutrient content. Agricultural and Food Science, 29(3), 210–221. doi: 10.23986/afsci.85221
  • 9. Kuht, J., Eremeev, V., Talgre, L., Madsen, H., Toom, M., Maeorg, E., Luik, A. 2016. Soil weed seed bank and factors influencing the number of weeds at the end of conversion period to organic production. Agronomy Research, 14(4), 1372–1379.
  • 10. Mahmood, N., Arshad, M., Kächele, H., Ma, H., Ullah, A., Müller, K. 2019. Wheat yield response to input and socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Science of the Total Environment, 688, 1275–1285. https://doi.org/10.1016/j.scitotenv.2019.06.266
  • 11. Marconi, V., Raggi, M., Viaggi, D. 2015. Assessing the impact of RDP agri-environment measures on the use of nitrogen-based mineral fertilizers through spatial econometrics: The case study of Emilia-Romagna (Italy). Ecological Indicators, 59(2015), 2740. https://doi.org/10.1016/j.ecolind.2015.02.037
  • 12. Maxwell, S.L., Fuller, R.A., Brooks, T.M., Watson, J.E.M. 2016. Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536(7615), 143–145. https://doi.org/10.1038/536143a
  • 13. Mazur V.A., Myalkovsky R.O., Pantsyreva H.V., Didur I.M., Mazur K.V., Alekseev O.O. 2020. Photosynthetic productivity of potato plants depending on the location of rows placement in agrophytocenosis. Eco. Env. & Cons., 26(2), 46–55.
  • 14. Mazur V., Didur I., Tkachuk O., Pantsyreva H., Ovcharuk V. 2021. Agroecological stability of cultivars of sparsely distributed legumes in the context of climate change. Scientific Horizons, 24(1), 54–60. https://doi.org/10.48077/scihor.24(1).2021.54-60.
  • 15. Mazur V., Pantsyreva H., Mazur K., Myalkovsky R., Alekseev O. 2020. Agroecological prospects of using corn hybrids for biogas production. Agronomy Research, 18, 205–219. https://doi.org/10.15159/ar.20.016
  • 16. Monarkh V.V., Pantsyreva H.V. 2019. Stages of the environmental risk assessment. Ukrainian Journal of Ecology, 9(4), 484–492. https://doi.org/10.15421/2019_779
  • 17. Nicholas, K.A., Villemoes, F., Lehsten, E.A., Brady, M.V., Scown, M.W. 2021. A harmonized and spatially explicit dataset from 16 million payments from the European Union’s Common Agricultural Policy for 2015. Patterns, 2(4), 100236. https://doi.org/10.1016/j.patter.2021.100236
  • 18. Parga, E., Carolina, A., Dacal, A., Zumbado, M., Alonso, P. 2022. Differences in the levels of sulphites and pesticide residues in soils and wines and under organic and conventional production methods. Journal of Food Composition and Analysis 112(February). https://doi.org/10.1016/j.jfca.2022.104714
  • 19. Parizad, S., Bera, S. 2021. The effect of organic farming on water reusability, sustainable ecosystem, and food toxicity. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-15258-7
  • 20. Patyka, V.P., Omelyanets, T.G., Hrynyk, I.V., Petrychenko, V.F. 2007. Ecology of microorganisms. Kyiv: Osnova. 192.
  • 21. Patyka, V.P., Petrychenko, V.F. 2004. Microbial nitrogen fixation in modern fodder production. Fodder and fodder production, 53, 3–11.
  • 22. Pawlewicz, A., Brodzinska, K., Zvirbule, A., Popluga, D. 2020. Trends in the development of organic farming in Poland and Latvia compared to the EU. Rural Sustainability Research, 43(388), 1–8. https://doi.org/10.2478/plua-2020-0001
  • 23. Petrychenko, V.F. 2003. Substantiating technologies for growing fodder crops and energy saving in field fodder production. Herald of Agrarian Science, 10, 6–10.
  • 24. Petrychenko, V.F. 2012. Agricultural microbiology and balanced development of agroecosystems. Herald of Agrarian Science, 8, 5–11.
  • 25. Petrychenko, V.F. 2012. Scientific basis of soybean production and use in animal husbandry. Fodder and fodder production, 71, 3–11.
  • 26. Petrychenko, V.F., Ivanyuk, S.V. 2000. The influence of varietal and hydrothermal resources on the formation of soybean productivity in the conditions of the forest-steppe. ZNP of the Institute of Agriculture of the Ukrainian Academy of Sciences, 3–4, 19–24.
  • 27. Petrychenko, V.F., Kobak, S.Ya., Chorna, V.M., Kolisnyk, S.I., Likhochvor, V.V., Pyda, S.V. 2018. Formation of the nitrogen-fixing potential and productivity of soybean varieties selected at the institute of feeds and agriculture of Podillia of NAAS. Mikrobiol. Z., 80(5), 63–75.
  • 28. Petrychenko, V.F., Korniychuk, O.V. 2012. Strategy for the development of fodder production in Ukraine. Fodder and fodder production. Vinnytsia, 73, 3–10.
  • 29. Petrychenko, V.F., Kots, S.Ya. 2014. Symbiotic systems in modern agricultural production. Bulletin of the National Academy of Sciences of Ukraine, 3, 57–66.
  • 30. Piwowar, A., Dzikuć, M., Dzikuć, M. 2021. Water management in Poland in terms of reducing the emissions from agricultural sources – current status and challenges. Cleaner Engineering and Technology 2(March). https://doi.org/10.1016/j. clet.2021.100082
  • 31. Poore, J., Nemecek, T. 2019. Reducing food’s environmental impacts through producers and consumers. https://doi.org/10.1126/science.aaq0216 Article
  • 32. Puyu, V., Bakhmat, M., Pantsyreva, H., Khmelianchyshyn, Y., Stepanchenko, V., Bakhmat, O. 2021. Social-and-ecological aspects of forage production reform in Ukraine in the early 21st century. European Journal of Sustainable Development, 10(1), 221–228.
  • 33. Ramakrishnan, B., Maddela, N.R., Venkateswarlu, K., Megharaj, M. 2021. Organic farming: Does it contribute to contaminant-free produce and ensure food safety? Science of the Total Environment, 769, 145079. https://doi.org/10.1016/j.scitotenv.2021.145079
  • 34. Zhao, J., Bindi, M., Eitzinger, J., Ferrise, R., Gaile, Z., Gobin, A., Holzkämper, A., Kersebaum, K–C., Kozyra, J., Kriaučiūnienė, Z., Loit, E., Nejedlik, P., Nendel, C., Niinemets, Ü., Palosuo, T., PeltonenSainio, P., Potopová, V., Ruiz–Ramos, M., Reidsma, P., Rijk, B., Trnka, M., van Ittersum, M.K., Olesen, J.E. 2022. Priority for climate adaptation measures in European crop production systems. European Journal of Agronomy, 138, 126516. https://doi.org/10.1016/j.eja.2022.126516
  • 35. Zhou, C. Liu, C., Liang, Y., Liu Z., Wei, P., Wang, X.J.M.L. 2020. Application of natural weathered red-bed soil for effective wall protection filter-cake formation. Mater. Lett, 258, 126679.
  • 36. Zhou, C.Y., Zhao, S.S., Yang, X., Liu, Z. 2019. Improvement of eco-ester materials on sandy soils and engineering slope protection. Rock Soil Mech, 40, 4828–4837.
  • 37. Hetman, N., Veklenko, Yu., Petrychenko, V., Korniichuk, O., Buhaiov, V. 2024. Agrobiological substantiation of growing Hungarian vetch in mixed crops. Scientific Horizons, 27(4), 61–75. https://doi.org/10.48077/scihor4.2024.61
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db1252de-457f-41df-aa3d-be09c7d0201e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.