Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 46, nr 4 | 781--793
Tytuł artykułu

Convergence of an implicit iteration process with errors for two asymptotically nonexpansive mappings

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to introduce an implicit iterative process with errors for approximating common fixed point of two finite families of asymptotically nonexpansive mappings in the framework of Banach space. The results presented in this paper extend and generalize the corresponding results of Qin et al. [Convergence analysis of implicit iterative algorithms for asymptotically nonexpansive mappings, Appl. Math. Comp. 210 (2009), 542–550], Thakur [Weak and strong convergence of composite implicititeration process, Appl. Math. Comp. 190 (2007), 965–973] and some others.
Wydawca

Rocznik
Strony
781--793
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
  • Department of Mathematics, Art and Science Faculty, Harran University, 63200, Sanliurfa, Turkey, temirseyit@harran.edu.tr
Bibliografia
  • [1] S. S. Chang, K. K. Tan, H. W. J. Lee, C. K. Chan, On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 313 (2003), 273–283.
  • [2] C. E. Chidume, N. Shahzad, Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal. 62(6) (2005), 1149–1156.
  • [3] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly Banach spaces, Comment. Math. Univ. Carolin. 301 (1989), 249–252.
  • [4] K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174.
  • [5] X. Qin, Y. J. Cho, M. Shang, Convergence analysis of implicit iterative algorithms for asymptotically nonexpansive mappings, Appl. Math. Comput. 210 (2009), 542–550.
  • [6] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153–159.
  • [7] Z. H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286 (2003), 351–358.
  • [8] K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iterative process, J. Math. Anal. Appl. 178 (1993), 301–308.
  • [9] B. S. Thakur, Weak and strong convergence of composite implicit iteration process, Appl. Math. Comput. 190 (2007), 965–973.
  • [10] H. K. Xu, R. G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22 (2001), 767–773.
  • [11] Y. Zhou, S. S. Chang, Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numerical Functional Analysis and Optimization 23 (2002), 911–921.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-db0dbec2-1b7c-4193-93af-b51051da81e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.