Warianty tytułu
Języki publikacji
Abstrakty
Diabetic retinopathy (DR) can cause blindness and vision impairment. This degenerative eye condition may lead to an irreversible vision loss. The prevalence of vision impairment and blindness caused by DR emphasizes the critical need for better screening and therapy measures. DR aetiology involves persistent hyperglycemia-induced microvascular abnormalities, oxidative stress, inflammatory reactions, and retinal blood flow changes. Common screening methods for retinal issues include fundus photography, OCT, and fluorescein angiography. For those with diabetic macular edema (DME), it is a common cause of vision loss. Our goal is to develop an automated, cost-effective method for identifying diabetic retinal disease specimens. This study introduces a faster R-CNN method for detecting and classifying DR lesions in retinal images. Those are classified across five different classes. An extensive analysis of 88,704 images from a Kaggle dataset indicates the efficiency of the proposed model, with a reasonable accuracy of 98.38%. The proposed method is robust in disease localization and classification tasks and it has outperformed other existing studies in DR recognition. On evaluating cross-datasets in Kaggle and APTOS, the model has yield better results during training and testing phases.
Rocznik
Tom
Strony
661--678
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer Science and Engineering, Prasad V Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, 520007, Andhra Pradesh, India
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, 522503, Andhra Pradesh, India
- Department of Teleinformatics Engineering, Federal University of Ceará, 100 Pres. Kennedy, 60455-970, Fortaleza, Brazil
autor
- Department of Computer Engineering and Information, Prince Sattam bin Abdulaziz University, 11991, Wadi Alddawasir, Saudi Arabia
autor
- Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland
autor
- Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, adam.zielonka@polsl.pl
Bibliografia
- [1] Albahli, S., Nazir, T., Irtaza, A. and Javed, A. (2021). Recognition and detection of diabetic retinopathy using Densenet-65 based Faster-R-CNN, Computers, Materials & Continua 67(2): 1333-1351.
- [2] Alwakid, G., Gouda, W. and Humayun, M. (2023). Deep learning-based prediction of diabetic retinopathy using CLAHE and ESRGAN for enhancement, Healthcare 11(6).
- [3] Alyoubi, W.L., Shalash, W.M. and Abulkhair, M.F. (2020). Diabetic retinopathy detection through deep learning techniques: A review, Informatics in Medicine Unlocked 20(2020): 100377.
- [4] Aziza, E.Z., Mohamed El Amine, L., Mohamed, M. and Abdelhafid, B. (2019). Decision tree CART algorithm for diabetic retinopathy classification, 2019 6th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, pp. 1-5.
- [5] Barburiceanu, S., Terebes, R. and Meza, S. (2021). 3D texture feature extraction and classification using GLCM and LBP-based descriptors, Applied Sciences 11(5): 2332.
- [6] Bergers, G. and Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance, Neuro-Oncology 7(4): 452-464.
- [7] Bhandari, S., Pathak, S. and Jain, S. (2022). A literature review of early-stage diabetic retinopathy detection using deep learning and evolutionary computing techniques, Archives of Computational Methods in Engineering 30(2): 799-810.
- [8] Carrera, E. V., González, A. and Carrera, R. (2017). Automated detection of diabetic retinopathy using SVM, 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru, pp. 1-4.
- [9] Das, D., Biswas, S. and Bandyopadhyay, S. (2022). Detection of diabetic retinopathy using convolutional neural networks for feature extraction and classification (DRFEC), Multimedia Tools and Applications 82(19): 1-59.
- [10] Fayyaz, A.M., Sharif, M.I., Azam, S., Karim, A. and El-Den, J. (2023). Analysis of diabetic retinopathy (DR) based on the deep learning, Information 14(1): 30.
- [11] Guleria, P., Naga Srinivasu, P. and Hassaballah, M. (2023). Diabetes prediction using Shapley additive explanations and DSaaS over machine learning classifiers: A novel healthcare paradigm, Multimedia Tools and Applications 83: 40677-40712.
- [12] Gupta, A. and Chhikara, R. (2018). Diabetic retinopathy: Present and past, Procedia Computer Science 132(2018): 1432-1440.
- [13] Harun, N.H., Yusof, Y., Hassan, F. and Embong, Z. (2019). Classification of fundus images for diabetic retinopathy using artificial neural network, 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, pp. 498-501.
- [14] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.R. (2012). Improving neural networks by preventing co-adaptation of feature detectors arXiv: 1207.0580.
- [15] IDF (2024). IDF Diabetes Atlas, 8th Edition, International Diabetes Federation, Brussels, https://diabetesatlas.org/.
- [16] Kandan, R. and Aruna, P. (2012). SVM and neural network based diagnosis of diabetic retinopathy, International Journal of Computer Applications 41(1): 6-12.
- [17] Kandel, I. and Castelli, M. (2020). Transfer learning with convolutional neural networks for diabetic retinopathy image classification. A review, Applied Sciences 10(6): 1-24.
- [18] Kaur, J. and Kaur, P. (2022). Automated computer-aided diagnosis of diabetic retinopathy based on segmentation and classification using K-nearest neighbor algorithm in retinal images, The Computer Journal 66(8): 2011-2032.
- [19] Li, X., Hu, X., Yu, L., Zhu, L., Fu, C.-W. and Heng, P.-A. (2020). CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading, IEEE Transactions on Medical Imaging 39(5): 1483-1493.
- [20] Liu, C., Ge, H.-M., Liu, B.-H., Dong, R., Shan, K., Chen, X., Yao, M.-D., Li, X.-M., Yao, J., Zhou, R.-M., Zhang, S.-J., Zhao, C. and Yan, B. (2019). Targeting pericyte-endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction, Proceedings of the National Academy of Sciences 116: 7455-7464.
- [21] Mohanty, C., Mahapatra, S., Acharya, B., Kokkoras, F., Gerogiannis, V.C., Karamitsos, I. and Kanavos, A. (2023). Using deep learning architectures for detection and classification of diabetic retinopathy, Sensors 23(12): 1-18.
- [22] Naga Srinivasu, P., Ijaz, M.F. and Woźniak, M. (2024). XAI-driven model for crop recommender system for use in precision agriculture, Computational Intelligence 40(1): e12629.
- [23] Nur-A-Alam, M., Nasir, M.M.K., Ahsan, M., Based, M.A., Haider, J. and Palani, S. (2023). A faster R-CNN-based diabetic retinopathy detection method using fused features from retina images, IEEE Access 11: 124331-124349.
- [24] Oh, K., Kang, H., Leem, D., Lee, H., Seo, K.Y. and Yoon, S. (2021). Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images, Scientific Reports 11: 1-9.
- [25] Patel, S.N., Shi, A., Wibbelsman, T.D. and Klufas, M.A. (2020). Ultra-widefield retinal imaging: An update on recent advances, Therapeutic Advances in Ophthalmology 12: 2515841419899495.
- [26] Priyadharsini, C. and Jagadeesh Kannan, R. (2023). Retinal image enhancement based on color dominance of image, Scientific Reports 13: 7172.
- [27] Rajesh, A.E., Davidson, O.Q., Lee, C.S. and Lee, A.Y. (2023). Artificial intelligence and diabetic retinopathy: AI framework, prospective studies, head-to-head validation, and cost-effectiveness, Diabetes Care 46(10): 1728-1739.
- [28] Rakshitha, T.R., Devaraj, D. and Kumar, S.C.P. (2016). Comparative study of imaging transforms on diabetic retinopathy images, 2016 IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology (RTEICT), Bangalore, India pp. 118-122.
- [29] Ramanathan, R.S. (2017). Correlation of duration, hypertension and glycemic control with microvascular complications of diabetes mellitus at a tertiary care hospital, Integrative Molecular Medicine 4(4): 1-4.
- [30] Ren, S., He, K., Girshick, R. and Sun, J. (2017). Faster r-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6): 1137-1149.
- [31] Romeo, G., Liu, W.-H., Asnaghi, V., Kern, T.S. and Lorenzi, M. (2002). Activation of nuclear factor kB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes, Diabetes 51(7): 2241-2248.
- [32] Romero-Aroca, P., Baget-Bernaldiz, M., Pareja-Rios, A., Lopez-Galvez, M., Navarro-Gil, R. and Verges, R. (2016). Diabetic macular edema pathophysiology: Vasogenic versus inflammatory, Journal of Diabetes Research 2016(1): 1-17.
- [33] Sakthi Sree Devi, M., Ramkumar, S., Vinuraj Kumar, S. and Sasi, G. (2021). Detection of diabetic retinopathy using OCT image, Materials Today: Proceedings 47: 185-190.
- [34] Sebastian, A., Elharrouss, O., Al-Maadeed, S. and Almaadeed, N. (2023). A survey on deep-learning-based diabetic retinopathy classification, Diagnostics 13(3): 1-22.
- [35] Solomon, S.D., Chew, E., Duh, E.J., Sobrin, L., Sun, J.K., VanderBeek, B.L., Wykoff, C.C. and Gardner, T.W. (2017). Diabetic retinopathy: A position statement by the American Diabetes Association, Diabetes Care 40(3): 412-418.
- [36] Sorrentino, F.S., Allkabes, M., Salsini, G., Bonifazzi, C. and Perri, P. (2016). The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy, Life Sciences 162: 54-59.
- [37] Tomita, Y., Lee, D., Tsubota, K., Negishi, K. and Kurihara, T. (2021). Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy, Journal of Clinical Medicine 10(20): 1-19.
- [38] Sudha, V. and Ganeshbabu, T.R. (2021). A convolutional neural network classifier VGG-19 architecture for lesion detection and grading in diabetic retinopathy based on deep learning, Computers, Materials & Continua 66(1): 827-842.
- [39] Vankadaru, V., Penugonda, G., Parvathaneni, N. and Bhoi, A.K. (2023). Heart failure prediction using radial basis with metaheuristic optimization, in P. Barsocchi et al. (Eds), Enabling Person-Centric Healthcare Using Ambient Assistive Technology, Springer, Cham, pp. 129-150.
- [40] Vinayaki, V. and Kalaiselvi, R. (2022). Multithreshold image segmentation technique using remora optimization algorithm for diabetic retinopathy detection from fundus images, Neural Processing Letters 54: 2363-2384.
- [41] Wang, W. and Lo, A.C.Y. (2018). Diabetic retinopathy: Pathophysiology and treatments, International Journal of Molecular Sciences 19(6): 1-14.
- [42] Yasashvini, R., Raja Sarobin, V., Panjanathan, R.,J., Yasmine, G. and Anbarasi, J. (2022). Diabetic retinopathy classification using CNN and hybrid deep convolutional neural networks, Symmetry 14(9): 1-13.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-daff4fd5-b691-4581-ad22-652af34d8d59