Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 40, no. 1 | 126--147
Tytuł artykułu

Impact of coronary tortuosity on the artery hemodynamics

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of tortuosity in coronary artery (CA) affects the local wall shear stress (WSS) which is an influencing hemodynamic descriptor (HD) for the development of atherosclerotic sites. To conduct a morphological parametric study in coronary arteries (CAs), several idealized tortuous artery models were obtained by varying three morphological indices namely, curvature radius (CR), distance between two bends (DBB) and the angle of bend (AoB). Computational fluid dynamics methodology with multiphase mixture theory is used to explore the effect of coronary tortuosity on various WSS based hemodynamic descriptors (HDs) namely, time-averaged WSS, oscillatory shear index, time-averaged WSS gradient, endothelial cell activation potential and the relative residence time that are used to determine the vulnerable locations for the onset of thrombosis and atherosclerosis. Our findings suggest that all the tortuosity morphological indices, CR, DBB and AoB have significant influence on the distributions of various HDs and hemodynamics. It is also observed that atherosclerosis prone sites were witnessed at the inner artery wall at downstream regions of the bend section 1 and bend section 2 in all the tortuous artery models studied and found to increase as the CR and DBB were reduced however, found to increase as the AoB is increased. Hence, severe coronary tortuosity in CAs with small CR, small DBB and higher AoB may have lower WSS zones at inner bend sections which promote atherosclerosis plaque progression. The analysis obtained from this multiphase blood flow study can be employed potentially in the clinical assessment on the severity of atherosclerosis lesions as well as in understanding the underlying mechanisms of localization and formation of atherosclerotic plaques.
Wydawca

Rocznik
Strony
126--147
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Multiphase Fluid Dynamics Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka Surathkal, P.O. Srinivasnagar – 575025, Mangalore, D.K., Karnataka State, India
  • M 405, Mechanical Engineering Department, National Institute of Technology Karnataka, Surathkal, P.O. Srinivasnagar – 575025, Mangalore, D.K., Karnataka State, India, m.arun1978@gmail.com
Bibliografia
  • [1] Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 2013;127(1):e6–245.
  • [2] Li Y, Shen C, Ji Y, Feng Y, Ma G, Liu N. The clinical implication of coronary tortuosity in patients with coronary artery disease. PLoS One 2011;6(8):e24232.
  • [3] Himabindu A. Coronary tortuosity and its clinical significance. Paripex-Indian J Res 2018;7(7):42–3.
  • [4] Gupta A, Panda P, Sharma YP, Mahesh A, Sharma P, Mahesh NK. Clinical profile of patients with coronary tortuosity and its relation with coronary artery disease. Int J Cardiol Cardiovasc Res 2018;4(2):066–71.
  • [5] Yang LI, Nai-feng LIU, Zhong-ze GU, Yong CHEN, Jun LU, Yi FENG, et al. Coronary tortuosity is associated with reversible myocardial perfusion defects in patients without coronary artery disease. Chin Med J 2012;125:3581–3.
  • [6] Han HC. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J Vasc Res 2012;49(3):185–97.
  • [7] Li Y, Feng Y, Ma G, Shen C, Liu N. Coronary tortuosity is negatively correlated with coronary atherosclerosis. J Int Med Res 2018;46(12):5205–9.
  • [8] Gaibazzi N, Rigo F, Reverberi C. Severe coronary tortuosity or myocardial bridging in patients with chest pain, normal coronary arteries, and reversible myocardial perfusion defects. Am J Cardiol 2011;108(7):973–8.
  • [9] Chiha J, Mitchell P, Gopinath B, Burlutsky G, Kovoor P, Thiagalingam A. Gender differences in the prevalence of coronary artery tortuosity and its association with coronary artery disease. IJC Heart Vasc 2017;14:23–7.
  • [10] Zegers ES, Meursing BTJ, Zegers EB, Ophuis AO. Coronary tortuosity: a long and winding road. Netherlands Heart J 2007;15(5):191–5.
  • [11] Morbiducci U, Kok AM, Kwak BR, Stone PH, Steinman DA, Wentzel JJ. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb Haemostasis 2016;115(3):484–92.
  • [12] Caro CG, Fitz-Gerald JM, Schroter RC. Arterial wall shear and distribution of early atheroma in man. Nature 1969;223 (5211):1159–61.
  • [13] Chiastra C, Iannaccone F, Grundeken MJ, Gijsen FJ, Segers P, De Beule M, et al. Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle. Biomed Eng Online 2016;15(1):91–106.
  • [14] Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75(3):519–60.
  • [15] Gimbrone Jr MA, García-Cardeña G. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol 2013;22(1):9–15.
  • [16] Ethier CR. Computational modeling of mass transfer and links to atherosclerosis. Anna Biomed Eng 2002;30(4):461–71.
  • [17] Mazzitelli R, Boyle F, Murphy E, Renzulli A, Fragomeni G. Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location. Biocybern Biomed Eng 2016;36(2):327–43.
  • [18] Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li XM, Friedman MH. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol-Heart Circ Phys 2004;286(5): H1916–22.
  • [19] Qiao AK, Guo XL, Wu SG, Zeng YJ, Xu XH. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries. Med Eng Phys 2004;26(7):545–52.
  • [20] Liu Q, Mirc D, Fu BM. Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J Biomech 2008;41(12):2726–34.
  • [21] Li Y, Liu X, Li Z, Tong J, Feng Y, Ma G, et al. Impact of coronary tortuosity on coronary pressure and wall shear stress: an experimental study. Mol Cell Biomech 2017;14 (4):213–9.
  • [22] Chesnutt JK, Han HC. Tortuosity triggers platelet activation and thrombus formation in microvessels. J Biomech Eng 2011;133(12):121004.
  • [23] Xie X, Wang Y, Zhu H, Zhou H, Zhou J. Impact of coronary tortuosity on coronary blood supply: a patient-specific study. PLoS One 2013;8(5):e64564.
  • [24] Xie X, Wang Y, Zhou H. Impact of coronary tortuosity on the coronary blood flow: a 3D computational study. J Biomech 2013;46(11):1833–41.
  • [25] Li Y, Shi Z, Cai Y, Feng Y, Ma G, Shen C, et al. Impact of coronary tortuosity on coronary pressure: a numerical simulation study. PLoS One 2012;7(8):e42558.
  • [26] Wang L, Zhao F, Wang D, Hu S, Liu J, Zhou Z, et al. Pressure drop in tortuosity/kinking of the internal carotid artery: simulation and clinical investigation. BioMed Res Int 2016;1–8. 2428970.
  • [27] Xie X, Wang Y, Zhu H, Zhou J. Computation of hemodynamics in tortuous left coronary artery: a morphological parametric study. J Biomech Eng 2014;136 (10):101006.
  • [28] Vorobtsova N, Chiastra C, Stremler MA, Sane DC, Migliavacca F, Vlachos P. Effects of vessel tortuosity on coronary hemodynamics: an idealized and patient-specific computational study. Anna Biomed Eng 2016;44(7):2228–39.
  • [29] Haynes RH. Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol-Legacy Content 1960;198(6):1193–200.
  • [30] Stadler AA, Zilow EP, Linderkamp O. Blood viscosity and optimal hematocrit in narrow tubes. Biorheology 1990;27 (5):779–88.
  • [31] Egorov VA, Regirer SA, Shadrina NK. Properties of pulsating blood flow through resistive blood vessels. Fluid Dyna 1994;29(2):221–6.
  • [32] Buradi A, Mahalingam A. Effect of stenosis severity on wall shear stress based hemodynamic descriptors using multiphase mixture theory. J Appl Fluid Mech 2018;11 (6):1497–509.
  • [33] Quemada D. Rheology of concentrated disperse systems II. A model for non-Newtonian shear viscosity in steady flows. Rheol Acta 1978;17(6):632–42.
  • [34] Caro CG. The mechanics of the circulation. Cambridge: United Kingdom: Cambridge University Press; 2012.
  • [35] Cokelet GR. The rheology and tube flow of blood. In Handbook of Bioengineering. New York: McGraw-Hill; 1987 [Chapter 14].
  • [36] ANSYS Inc. ANSYS user and theory guide. PA: ANSYS Fluent, Release 14.5. Inc Cecil Township; 2012.
  • [37] Berne RM, Levy MN. Cardiovascular physiology. Mosby; 1967.
  • [38] Huang J, Lyczkowski RW, Gidaspow D. Pulsatile flow in a coronary artery using multiphase kinetic theory. J Biomech 2009;42(6):743–54.
  • [39] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91(1):327–87.
  • [40] Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesthesia Analgesia 2012;114 (2):275–85.
  • [41] Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. A positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis: Off J Am Heart Assoc Inc 1985;5(3):293–302.
  • [42] Di Achille P, Tellides G, Figueroa CA, Humphrey JD. A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms. Proc R Soc A 2014;470(2172):20140163.
  • [43] He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996;118(1):74–82.
  • [44] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 1999;282 (21):2035–42.
  • [45] Patrick MJ, Chen CY, Frakes DH, Dur O, Pekkan K. Cellular-level near-wall unsteadiness of high-hematocrit erythrocyte flow using confocal mPIV. Exp Fluids 2011;50 (4):887–904.
  • [46] Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscl Thromb Vasc Biol 2009;29(2):158–61.
  • [47] Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 2007;49(25):2379–93.
  • [48] Cunningham KS, Gotlieb AI. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 2005;85(1):9–23.
  • [49] Archie Jr JP, Hyun S, Kleinstreuer C, Longest PW, Truskey GA, Buchanan JR. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 2001;29(1):1–64.
  • [50] Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, et al. Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 2009;25(5):565–80.
  • [51] Hasan M, Rubenstein DA, Yin W. Effects of cyclic motion on coronary blood flow. J Biomech Eng 2013;135(12):121002.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dae8a343-c1de-430f-8208-c9838d3981f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.