Czasopismo
2024
|
Vol. 53, No. 4
|
346--354
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the length–weight relationships of Pontastacus leptodactylus, a freshwater crayfish species found in the Keban Dam Lake, were assessed using both conventional methods and artificial intelligence techniques. Throughout the research process, all biometric measurements of the crayfish were meticulously recorded, including TL, TW, and other biometric data. These measurements were analyzed using both the conventional length–weight relationship method and artificial neural networks. The results obtained using artificial neural networks and conventional methods were compared, and the analysis was based on MAPE and R2 performance criteria. The study showed that the ANNs method outperformed the conventional LWR method, showing more accurate results. The models employed to predict the length–weight relationships of the crayfish demonstrated high accuracy, and the Artificial Neural Networks method was identified as the most effective model. These results provide strong evidence that the ANNs method performs significantly better in predicting the LWRs of freshwater crayfish.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
346--354
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
- Science Education Department, Faculty of Gazi Education, Gazi University, Ankara, Türkiye, sbenzer@gazi.edu.tr
autor
- Management Information System Department, School of Administrative and Social Sciences, Ankara Medipol University, Ankara, Türkiye
Bibliografia
- [1]. Alekhnovich, A. (2021). Characteristics of populations of narrow-clawed crayfish Pontastacus leptodactylus in three Belarusian lakes of the Baltic sea catchment area. Baltic Coastal Zone, 25, 19-30.
- [2]. Alvanou, M. V., Papadopoulos, D. K., Lattos, A., Georgoulis, I., Feidantsis, K., Apostolidis, A. P., Michaelidis, B., & Giantsis, I. A. (2022). Biology, distribution, conservation status and stocking perspective of freshwater crayfish in Greece: An updated review. Aquaculture Research, 53(15), 5115-5128. https://doi.org/10.1111/are.16009
- [3]. Aydın, H., Harlioglu, M. M., & Deniz, T. (2015). An investigation on the population parameters of freshwater crayfish (Astacus leptodactylus Esch., 1823) in Lake Iznik (Bursa). Turkish Journal of Zoology, 39(4), 660-668. https://doi.org/10.3906/zoo-1406-6
- [4]. Balık, S., Ustaoğlu, M. R., Sarı, H. M., & Berber, S. (2005). Determination of traits some growth and morphometric of crayfish (Astacus leptodactylus Eschscholtz, 1823) at Demirköprü Dam Lake (Manisa). [in Turkish]. Ege Journal of Fisheries and Aquatic Sciences, 22(1-2), 83-89.
- [5]. Benzer, R., & Benzer, S. (2020). Alternative approaches to traditional methods for growth parameters of fisheries industry: Artificial Neural Networks. Enterprise & Business Management: A Handbook for Educators. Consultants, and Practitioners.
- [6]. Benzer, S., Benli, Ç. K., & Benzer, R. (2015). The comparison of growth with length-weight relation and artificial neural networks of crayfish, Astacus leptodactylus, in Mogan Lake. Journal of the Black Sea/Mediterranean Environment, 21(2), 208-223.
- [7]. Benzer, S., & Benzer, R. (2015). Determine some morphological characteristics of crayfish (Astacus leptodactylus Eschscholtz, 1823) with traditional methods and artificial neural networks in Dikilitas Pond, Ankara, Turkey. Fresenius Environmental Bulletin, 24(11A), 3727-3735.
- [8]. Benzer, S., Benzer, R., & Günal, A. (2017a). Artificial neural networks approach in length-weight relation of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Eğirdir Lake, Isparta, Turkey. Journal of Coastal Life Medicine, 5(8), 330- 335. https://doi.org/10.12980/jclm.5.2017J7-19
- [9]. Benzer, S., Benzer, R., & Günal, A. (2017b). Artificial neural networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanlı Dam Lake. Biologia, 72(5), 527-535. https://doi.org/10.1515/biolog-2017-0052
- [10]. Benzer, S., & Benzer, R. (2018). New perspectives for predicting growth properties of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35-45.
- [11]. Benzer, S., & Benzer, R. (2022). Morphometric analysis of Crayfish-traditional and artificial intelligent approach. Thalassas, 38(2), 989-996. https://doi.org/10.1007/s41208-022-00447-z
- [12]. Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse, D. (2016). WEKA manual for version 3-9-1. University of Waikato.
- [13]. Crandall, K. A., & De Grave, S. (2017). An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology, 37(5), 615-653. https://doi.org/10.1093/jcbiol/rux070
- [14]. DSI. (1982). Keban Fishery Project Aquaculture Turkey. IDRC 3- P-75-0034. General Directorate of State Hydraulic Works Reports. Turkish.
- [15]. Flinn, S. A., & Midway, S. R. (2021). Trends in growth modeling in fisheries science. Fishes, 6(1), 1-18. https://doi.org/10.3390/fishes6010001
- [16]. Galib, S. M., Sun, J., Gröcke, D. R., & Lucas, M. C. (2022). Ecosystem effects of invasive crayfish increase with crayfish density. Freshwater Biology, 67(6), 1005-1019. https://doi.org/10.1111/fwb.13897
- [17]. Hossain, M. S., Kouba, A., & Buřič, M. (2019). Morphometry, size at maturity, and fecundity of marbled crayfish (Procambarus virginalis). Zoologischer Anzeiger, 281, 68-75. https://doi.org/10.1016/j.jcz.2019.06.005
- [18]. Lu, W., Li, P., Ma, B., Huo, T., Yin, Z., Tang, F., & Wang, J. (2023). Assessment of fishery management parameters for major prey fish species in the lower reaches of the Songhua River. Frontiers in Marine Science, 10, 1166634. https://doi.org/10.3389/fmars.2023.1166634
- [19]. May, R., Dandy, G., & Maier, H. (2011). Review of input variable selection methods for artificial neural networks. Artificial neural networks-methodological advances and biomedical applications, 10(1), 19-45. https://doi.org/10.5772/16004
- [20]. Mazlum, Y., Can, M. F., & Öksüz, A. (2019). Diversification of narrow-clawed crayfish (Pontastacus leptodactylus Eschscholtz, 1823) populations from different parts of Turkey. Marine and Life Sciences, 1(1), 1-9.
- [21]. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT, big data, and artificial intelligence in agriculture and food industry. IEEE Internet of Things Journal, 9(9), 6305-6324. Advance online publication. https://doi.org/10.1109/JIOT.2020.2998584
- [22]. Montaño Moreno, J. J., Palmer Pol, A., Sesé Abad, A., & Cajal Blasco, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500-506. https://doi.org/10.7334/psicothema2013.23 PMID:24124784
- [23]. Naz, S., & Chatha, A. M. M. (2023). Efficacy of Insect Feed as Protein Source in Aqua Feed and its Impact on Growth Performance of Fish. BioScientific Review, 5(2), 39-49. https://doi.org/10.32350/BSR.52.05
- [24]. Pauly, D., & Morgan, G. R. (Eds.). (1987). Length-based methods in fisheries research (Vol. 13). WorldFish.
- [25]. Rahman, M. A., Manon, M. R. K., Ullah, M. R., Alam, A., Islam, M. J., Siddik, M. A. B., & Iqbal, M. M. (2023). Biometric indices, growth pattern, and physiological status of captive-reared indigenous Yellowtail brood catfish, Pangasius pangasius (Hamilton, 1822). Environmental Science and Pollution Research International, 30, 83388-83400. https://doi.org/10.1007/s11356-023-28328-9 PMID:37340162
- [26]. Roljić, R., Nikolić, V., & Savić, N. (2019). Morphological Variability and Sexual Dimorphism of Danube Crayfish Pontastacus leptodactylus Eschscholtz, 1823 from the Vrbas River. Water Resources Management, 9(2), 27-32.
- [27]. Saemi-Komsari, M., Esmaeili, H. R., Keshavarzi, B., Abbasi, K., Birami, F. A., Nematollahi, M. J., Tayefeh, F. H., & Busquets, R. (2023). Characterization of ingested MPs and their relation with growth parameters of endemic and invasive fish from a coastal wetland. The Science of the Total Environment, 860, 160495. https://doi.org/10.1016/j.scitotenv.2022.160495 PMID:36455731
- [28]. Shaaban, E., El-Sayed, A., El Feky, F., Gawad, A., Soad, M., & Mohammed, N. H. (2021). Spatial Variations in The Length-Weight Relationship and Relative Condition Factor of The Introduced Freshwater Crayfish, Procambarus clarkii,(Girard, 1852) from the River Nile and Its Tributaries, Egypt. Egyptian Academic Journal of Biological Sciences. B, Zoology, 13(2), 135-146. https://doi.org/10.21608/eajbsz.2021.201694
- [29]. Sholahuddin, A., Ramadhan, A. P., & Supriatna, A. K. (2015). The application of ANN-Linear Perceptron in the development of DSS for a fishery industry. Procedia Computer Science, 72(2015), 67-77. https://doi.org/10.1016/j.procs.2015.12.106
- [30]. Sun, Q., Zhang, M., Zhou, L., Garme, K., & Burman, M. (2022). A machine learning-based method for prediction of ship performance in ice: Part I. ice resistance. Marine Structures, 83, 103181. https://doi.org/10.1016/j.marstruc.2022.103181
- [31]. Suryanarayana, I., Braibanti, A., Rao, R. S., Ramam, V. A., Sudarsan, D., & Rao, G. N. (2008). Neural networks in fisheries research. Fisheries Research, 92(2-3), 115-139. https://doi.org/10.1016/j.fishres.2008.01.012
- [32]. Wang, Q., Yang, J. X., Zhou, G. Q., Zhu, Y. A., & Shan, H. (2011). Length-weight and chelae length-width relationships of the crayfish Procambarus clarkii under culture conditions. Journal of Freshwater Ecology, 26(2), 287-294. https://doi.org/10.1080/02705060.2011.564380
- [33]. Wang, W., & Lu, Y. (2018). Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. In IOP conference series: Materials Science and Engineering 324, 012049. IOP Publishing., https://doi.org/10.1088/1757-899X/324/1/012049
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dac3a40b-6dc0-4311-8616-8e60763f1ed2