Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, no. 2 | 207--225
Tytuł artykułu

Investigation of geomechanical properties of carboniferous rocks for evaluating the possibility of energetic use of water and methane from hard coal mines

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to indicate the variability range of parameter values describing the geomechanical properties of Carboniferous rocks depending on the moisture content of the laboratory sample. We assumed that the moisture content in the tested rock samples corresponds to various water saturation states in the rock mass. The states could be caused by complete and long-term drainage, water inflow, or the position of the rock sample to the ventilation ducts or the water table in flooded mine workings. In line with this assumption, measurements were made on samples of accompanying rock using two water saturation states of rock pores – moisture of samples, i.e., air-dried and capillary saturation states. Laboratory surveys were also made for the state of moisture of the coals obtained in the process of immersion of the sample in water. The air-dried state of rocks as standard in geomechanical tests in laboratories was compared with the surroundings of mining excavations, mostly ventilated ones, located within a long-term preserved depression cone, especially in hydrogeological covered areas. We used the capillary saturation state to demonstrate significant changes in the values of basic geomechanical parameters under the influence of the water from the surface and higher aquifers, circulating in the rock mass near groundwater reservoirs. Capillary saturation was the closest to natural moisture in the rock mass drained from free water. The coefficient of changes in the geomechanical properties of rocks associated with the change in moisture content and the transition of rocks from the air-dried state to the capillary saturation state was determined. The parameter was suitable for simulating probable changes in the values of geomechanical parameters of rocks and approximating the laboratory moisture content to the conditions occurring in the rock mass. Linear relationships were also developed with very good or good, and sometimes satisfactory coefficient determinations.
Wydawca

Rocznik
Strony
207--225
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr.
Twórcy
  • GIG Research Institute, 1 Gwarków Sq., 40-166 Katowice, Poland, mbukowska@gig.eu
  • GIG Research Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Bibliografia
  • [1] M. Bukowska, Susceptibility of the rock mass to rock bursts – geological and geomechanical assessment methods. GIG, Katowice (2012).
  • [2] P. Bukowski, Evaluation of water hazard in hard coal mines In changing of functioning of mining industry in Upper Silesian Coal Basin – USCB (Poland). Arch. Min. Sci. 60 (2), 455-476 (2015).
  • [3] A.B. Hawkins, B.J. McConnell, Sensitivity of sandstone strength and deformability to changes in moisture content. Eng. Geol. 25 (2), 115-130 (1992).
  • [4] K. Masuda, Effects of water on rocks strength in e brittle regime. Journal of Structural Geology 23, 1653-1657 (2001).
  • [5] P.A. Hale, A.A. Shakoor, Laboratory Investigation of the Effects of Cyclic Heating and Cooling, Wetting and Drying, and Freezing and Thawing on the Compressive Strength of Selected Sandstones. Environmental and Engineering Geoscience 9 (2), 117-130 (2003). DOI: https://doi.org/10.2113/9.2.117.
  • [6] Z. Li, D.J. Reddish, The effect of groundwater recharge on broken rocks. International Journal of Rock Mechanics and Mining Sciences 41, 280-285 (2004). DOI: https://doi.org/10.1016/j.ijrmms.2004.03.054.
  • [7] B. Vásárhelyi, P. Ván, Influence of water content on the strength of rock. Engineering Geology 84 (1-2), 70-74 (2006). DOI: https://doi.org/10.1016/j.enggeo. 2005.11.011.
  • [8] F. Cherblanc, J. Berthonneau, P. Bromblet, V. Huon, Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content. Rock Mech. Rock Eng. 49, 2033-2042 (2016). DOI: https://doi.org/10.1007/s00603-015-0911-y.
  • [9] L.N.Y. Wong, V. Maruvanchery, G. Liu, Water effects on rock strength and stiffness degradation. Acta Geotechnica 11, 713-737 (2016). DOI: https://doi.org/10.1007/s/11440-015-0407-7.
  • [10] X. Shi, W. Cai, Y. Meng, G. Li, K. Wen, Y. Zhang, Weakening laws of rock uniaxial compressive strength with consideration of water content and rock porosity. Arabian Journal of Geosciences 9 (51), Article number 369 (2016). DOI: https://doi.org/10.1007/s12517-016-2426-6.
  • [11] Y.V. Petrov, I.V. Smirnov, G.A. Volkov, A.K. Abramian, A.M. Bragov, S.N. Verichev, Dynamic failure of dry and fully saturated limestone samples based on incubation time concept. Journal of Rock Mechanics and Geotechnical Engineering 9, 125-134 (2017).
  • [12] E. Ӧzdemir, D.E. Sarici, Combined Effect of Loading Rate and Water Content on Mechanical Behavior of Natural Stones. Journal of Mining Science 54, 931-937 (2018).
  • [13] Y. Majeed, M.Z. Abu Bakar, Water saturation influences on engineering properties of select sedimentary rocks of Pakistan. Journal of Mining Science 54 (6), 914-930 (2018).
  • [14] P. Kijewski, J. Lis, Oddziaływanie zasolonych wód kopalnianych na mechaniczne właściwości skał w kopalniach rud miedzi. Górnictwo i Geoinżynieria 33 (1), 333-343 (2009).
  • [15] I. Yilmaz, Influence of water content on the strength and deformability of gypsum. International Journal of Rock Mechanics and Mining Sciences 47 (2), 342-347 (2010). DOI: https://doi.org/10.1016/j.ijrmms. 2009.09.002.
  • [16] P. Małkowski, A. Ulaszek, Ł. Ostrowski, Optimization of roof coal thickness in the roof of longwall face as a result of water inflow into roof rocks. Przegląd Górniczy 3, 48-57 (2014).
  • [17] Q. Yao, X. Li, J. Zhou, M. Ju, Z. Chong, B. Zhao, Experimental study of strength characteristics of coal specimens after water intrusion. Arabian Journal of Geosciences 8 (9), 6779-6789 (2015). DOI: https://doi.org/10.1007/s12517-014-1764-5.
  • [18] Z. Zhou, X. Cai, W. Cao, X. Li, C. Xiong, Influence of water content on mechanical properties of rock in Both saturation and drying processes. Rock Mech. Rock Eng. 49, 3009-3025 (2016). DOI: https://doi.org/10.1007/s00603-016-0987-z.
  • [19] D. Zhang, R.P. Gamage, M.S.A Perera, C. Zhang, W.A.M. Wanniarachchi, Influence of water saturation on the mechanical behaviour of low-permeability reservoir rocks. Energies 10 (236), 1-19 (2017). DOI: https://doi.org/10.3390/en10020236.
  • [20] Ł. Ostrowski, P. Małkowski, Wpływ zawodnienia na wypiętrzanie skał spągowych wyrobiska korytarzowego. Przegląd Górniczy 72 (3), 28-38 (2016).
  • [21] Y. Zhang, Mechanism of Water Inrush of a Deep Mining Floor Based on Coupled Mining Pressure and Confined Prerssure. Journal of the International Mine Water Association (IMWA) 40 (2), 366-377 (2021).
  • [22] A. Li, Q. Mu, L. Ma, C. Liu, S. Wang, F. Wang, L. Mou, Numerical Analysis of the Water-blocking Performance of a Floor with a Composite Structure under Fluid-solid Coupling. Journal of the International Mine Water Association (IMWA) 40 (2), 479-496 (2021).
  • [23] Ł. Wojtecki, S. Iwaszenko, D.B. Apel, M. Bukowska, J. Makówka, Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings. Journal of Rock Mechanics and Geotechnical Engineering 14 (3), 703-713 (2022).
  • [24] E. Konstantynowicz, T. Bromek, T. Piłat, E. Posyłek, M. Rogoż, Wyznaczanie filarów bezpieczeństwa dla ograniczenia zagrożenia wodnego w kopalniach węgla kamiennego. Prace Głównego Instytutu Górnictwa 615 (1974).
  • [25] M. Bukowska, Post-critical mechanical properties of sedimentary rocks in the Upper Silesian Coal Basin (Poland). Arch. Min. Sci. 60 (2), 517-534 (2015).
  • [26] A. Sygała, S. Bock, M. Bukowska, Simulation of coal gasification including the changes in rock strength parameters. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie 12 (256), 10-20 (2015).
  • [27] R. Ulusay, J.A. Hudson (Eds.), The complete ISRM suggested methods for rock characterization, testing and monitoring 1974-2006, Commision on testing methods ISRM 2007, Ankara, Turkey (2007).
  • [28] J.R. Klepaczko, On the rate sensitivity of coal. Rozprawy Inżynierskie 31 (3), 341-359 (1983).
  • [29] M. Bukowska, P. Bukowski, Changes of properties of Carboniferous rock mass and the occurrence of some natural hazards in the conditions of flooding of roadways within abandoned coal mines. Journal of Mining Science 57 (5), 56-70 (2021).
  • [30] A. Grmela, N. Rapantova, Protection of groundwater resources quality and quantity in mining areas NATO – Advanced-Study-Instituteon Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security. Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security 80, 385-397 (2002).
  • [31] P. Bukowski, Relationship between renewable energy from low enthalpy mine water stored in Polish hard coal mines and water hazards in active coal mines. Abstracts of the International Mine Water Conference. Proceedings ISBN Number: 978-0-9802623-5-3 Pretoria, South Africa, Produced by: Document Transformation Technologies, 946-951 (2009).
  • [32] P. Bukowski, M. Bukowska, N. Rapantova, P. Hemza, K. Niedbalska, Secondary Water Saturation of a Carboniferous Rock Mass in an Abandoned Mines as the Cause Behind the Changes in Geomechanical Conditions and State of Hazards in Active Mines of the Upper Silesian Coal Basin, in: C. Wolkersdorfer, E. Khayrulina, S. Polyakova, A. Bogush (Eds.), Proceedings of the IMWA, Conference Mine Water: Technological And Ecological Challenges, 3-9 (2019).
  • [33] P. Bukowski, B. Tomaszewska, M. Bukowska, L. Pająk, K. Niedbalska, Hydrogeological investigations in predicting UCG process influence on groundwater environment in Poland, 15th International Multidisciplinary Scientific Geoconference SGEM, II - Hydrogeology, Engineering Geology and Geotechnics, 375-382 (2015).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-dabd138a-70e5-41ce-af6f-5eddc95d3259
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.