Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 24, nr 2 | 223--231
Tytuł artykułu

On the multiobjective control problem

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, sufficient optimality conditions are established for the multiobjective control problem using efficiency of higher order as a criterion for optimality. The ρ-type 1 invex functionals (taken in pair) of higher order are proposed for the continuous case. Existence of such functionals is confirmed by a numer of examples. It is shown with the help of an example that this class is more general than the existing class of functionals.Weak and strong duality theorems are also derived for a mixed dual in order to relate efficient solutions of higher order for primal and dual problems.
Wydawca

Rocznik
Strony
223--231
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
Bibliografia
  • [1] A. Auslender, Stability in mathematical programming with nondifferentiable data, SIAM J. Control Optim. 22 (1984), no. 2, 239-254.
  • [2] D. Bhatia and P. Kumar, Multiobjective control problem with generalized invexity, J. Math. Anal. Appl. 189 (1995), no. 3, 676-692.
  • [3] G. Bhatia, Optimality and mixed saddle point criteria in multiobjective optimization, J. Math. Anal. Appl. 342 (2008), no. 1, 135-145.
  • [4] V. A. de Oliveira and G. N. Silva, On sufficient optimality conditions for multiobjective control problems, J. Global Optim. 64 (2016), no. 4, 721-744.
  • [5] V. A. de Oliveira, G. N. Silva and M. A. Rojas-Medar, A class of multiobjective control problems, Optimal Control Appl. Methods 30 (2009), no. 1, 77-86.
  • [6] I. Ginchev, A. Guerraggio and M. Rocca, Isolated minimizers and proper efficiency for C0;1 constrained vector optimization problems, J. Math. Anal. Appl. 309 (2005), 353-367.
  • [7] S. Gramatovici, Optimality conditions in multiobjective control problems with generalized invexity, An. Univ. Craiova Ser. Mat. Inform. 32 (2005), 150-157.
  • [8] T. R. Gulati, I. Husain and A. Ahmed, Optimality conditions and duality for multiobjective control problems, J. Appl. Anal. 11 (2005), no. 2, 225-245.
  • [9] I. Husain, A. Ahmed and B. Ahmad, Sufficiency and duality in control problems with generalized invexity, J. Appl. Anal. 14 (2008), no. 1, 27-42.
  • [10] B. Jiménez, Strict efficiency in vector optimization, J. Math. Anal. Appl. 265 (2002), no. 2, 264-284.
  • [11] K. Khazafi, N. Rueda and P. Enflo, Sufficiency and duality for multiobjective control problems under generalized (B, ρ)-type I functions, J. Global Optim. 46 (2010), no. 1, 111-132.
  • [12] P. Mandal and C. Nahak, Control problems under (p, r) − ρ − (η, θ)-invexity, Rend. Circ. Mat. Palermo (2) 64 (2015), no. 2, 291-307.
  • [13] B. Mond and I. Smart, Duality and sufficiency in control problems with invexity, J. Math. Anal. Appl. 136 (1988), no. 1, 325-333.
  • [14] D. E. Ward, Characterizations of strict local minima and necessary conditions for weak sharp minima, J. Optim. Theory Appl. 80 (1994), no. 3, 551-571.
  • [15] L. Zhian and Y. Qingkai, Duality for a class of multiobjective control problems with generalized invexity, J. Math. Anal. Appl. 256 (2001), no. 2, 446-461.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-da76ae54-3ffa-441c-9060-0c6c3ad93c2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.