Czasopismo
2019
|
Vol. 52, nr 1
|
467--474
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Reproducing Kernel Hilbert Spaces (RKHS) and their kernel are important tools which have been found to be incredibly useful in many areas like machine learning, complex analysis, probability theory, group representation theory and the theory of integral operator. In the present paper, the space of Coalescence Hidden-variable Fractal Interpolation Functions (CHFIFs) is demonstrated to be an RKHS and its associated kernel is derived. This extends the possibility of using this new kernel function, which is partly self-affine and partly non-self-affine, in diverse fields wherein the structure is not always self-affine.
Czasopismo
Rocznik
Tom
Strony
467--474
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics, Indian Institute of Technology Tirupati, India, srijanani@iittp.ac.in
Bibliografia
- [1] Barnsley M. F., Fractal functions and interpolation, Constr. Approx., 1986, 2(1), 303-329
- [2] Baldo S., Normant F., Tricot C., Fractals in Engineering, Montréal 1994 Proceedings, World Scientific, 1994
- [3] Havlin S. et. al., Fractals in biology and medicine, Chaos Solitons Fractals, 1995, 6, 171-201
- [4] Iovane G., Laserra E., Tortoriello F. S., Stochastic self-similar and fractal universe, Chaos Solitons Fractals, 2004, 20(3), 415-426
- [5] Voss R. F., Random fractals: Self aflnity in noise, music, mountains, and clouds, Phys. D, 1989, 38(1-3), 362-371
- [6] Barnsley M. F., Elton J., Hardin D., Massopust P., Hidden variable fractal interpolation functions, SIAM J. Math. Anal., 1989, 20(5), 1218-1248
- [7] Navascués M. A., Sebastián M. V., Generalization of Hermite functions by fractal interpolation, J. Approx. Theory, 2004,131(1), 19-29
- [8] Kapoor G. P., Prasad S. A., Super fractal interpolation functions, Int. J. Nonlinear Sci., 2015, 19(1), 20-29
- [9] Gang C., The smoothness and dimension of fractal interpolation function, Appl. Math. J. Chinese Univ. Ser. B, 1996, 11(4), 409-418
- [10] Navascués M. A., Sebastian M. V., Some results of convergence of cubic spline fractal interpolation functions, Fractals, 2003, 11(1), 1-7
- [11] Kapoor G. P., Prasad S. A., Convergence of cubic spline super fractal interpolation functions, Fractals, 2014, 22(1), 1-7
- [12] Prasad S. A., Regularity of fractal interpolation function via wavelet transforms, Adv. Pure Appl. Math., 2013, 4(2), 189-202
- [13] Chand A. K. B., Kapoor G. P., Smoothness analysis of coalescence hidden variable fractal interpolation functions, Int. J. Nonlinear Sci., 2007, 3(1), 15-26
- [14] Prasad S. A., Node insertion in coalescence fractal interpolation function, Chaos Solitons Fractals, 2013, 49, 16-20
- [15] Prasad S. A., Fractional calculus of coalescence hidden-variable fractal interpolation functions, Fractals, 2017, 25(2), Article ID 1750019
- [16] Mercer J., Functions of positive and negative type and their connection with the theory of integral equations, Philos. Trans.Roy. Soc. A, 1909, 209, 415-446
- [17] Moore E. H., On properly positive Hermitian matrices, Bull. Amer. Math. Soc., 1916, 23
- [18] Aronszajn N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 1950, 68(3), 337-404
- [19] Bouboulis P., Mavroforakis M., Reproducing kernel Hilbert spaces and fractal interpolation, J. Comput. Appl. Math., 2011, 235(12), 3425-3434
- [20] Kapoor G. P., Prasad S. A., Multiresolution analysis based on coalescence hidden-variable fractal interpolation functions, Int. J. Comput. Math., 2014, Article ID 531562
- [21] Kapoor G. P., Prasad S. A., Orthonormal coalescence hidden-variable fractal interpolation wavelets, In: Proceedings of the 6th Cornell Conference on Analysis, Probability and Mathematical Physics (in press)
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-da700249-1757-4bb4-ba73-d910c86b6939