Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the application of potassium ferrate(VI) (K2FeO4) for the removal of selected pollutants from water and wastewater. The research results on the degradation of endocrine disrupting compounds (EDCs), decomposition of surfactants (SPCs), personal care products (PCPs), pharmaceuticals and their metabolites have been reviewed. Due to K2FeO4 strong oxidizing and coagulating properties, high stability, non-toxic by-products and non-selectivity it is sometimes called “environmentally friendly oxidant”. Due to this reasons K2FeO4 can be a multi-purpose water and wastewater treatment chemical and an alternative to advanced oxidation processes (AOPs).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
129--138
Opis fizyczny
Bibliogr. 51 poz.
Twórcy
autor
- PhD Eng.; Graduate of Silesian Environmental Doctoral Studies of the Central Mining Institute in Katowice, Plac Gwarków 1, 40-166, Katowice, Poland
autor
- Prof.; The Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego Str. 18, 44-100 Gliwice, Poland
autor
- PhD Eng.; Chemiqua Water & Wastewater Company, Skawińska Str. 25/1, 31-066 Kraków, Poland
- biuro@chemiqua.pl
autor
- MSc; AHIS S.A., Oswobodzenia Str. 1, 40-403 Katowice, Poland
Bibliografia
- [1] Barbusiński, K., Nocoń, W., Nocoń, K., & Kernert, J. (2012). The role of suspended solids in the transport of heavy metals in surface water, exemplified by the Klodnica River (Upper Silesia). Ochrona Srodowiska, 34(2), 33-38.
- [2] https://www.scbt.com/scbt/product/potassium-ferratevi- 39469-86-8
- [01.02.2018].
- [3] Tiwari, D., & Lee, S.M. (2011). Ferrate (VI) in the treatment of wastewaters: a new generation green chemical. Waste Water Treatment and Reutilization, 12, 241-276.
- [4] Sharma, V.K., Kazama, F., Jiangyong, H., & Ray, A.K. (2005). Ferrates iron(VI) and iron(V), Environmentally friendly oxidants and disinfectants. Journal of Water and Health, 3(1), 45-58.
- [5] Wei, Y.L., Wang, Y.S., & Liu, C.H. (2015). Preparation of potassium ferrate from spent steel pickling liquid. Metals, 5(4), 1770-1787.
- [6] http://www.ferrate.eu/pdf/laymanexplanation.pdf
- [01.02. 2018].
- [7] Sharma, V.K. (2002). Potassium ferrate(VI): an environmental friendly oxidant. Advances in Environmental Research, 6(2), 143-156.
- [8] Li, C., Li, X.Z., & Graham, N. (2005). A study of preparation and reactivity of potassium ferrate. Chemosphere, 61(4), 537-543.
- [9] Kooti, M., Jorfi, M., & Javadi, H. (2010). Rapid chemical synthesis of four ferrate (VI) compounds. Journal of the Iranian Chemical Society, 7(4), 814-819.
- [10] Li, C. (2006). Mechanism and performance of potassium ferrate in endocrine disrupting chemicals. Dept. Of Civil & Structural Engineering, 1-250.
- [11] Liu, Z., Kanjo, Y., & Mizutani, S. (2009). Removal mechanism for endocrine disrupting compounds (EDC’s) in wastewater treatment - physical means, biodegradation and chemical advanced oxidation: a review. Science of the Total Environment, 407(2), 731-748.
- [12] Colbrom, T., vom Saal, F.S., & Soto, A.M. (1993). Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environmental Health Perspectives, 101(5), 378-384.
- [13] Jiang, J.Q., Yin, Q., Zhou, J.L., & Pearce, P. (2005). Occurrence and treatment trials of endocrine disrupting chemicals (EDC’s) in wastewaters. Chemosphere, 61(4), 544-550.
- [14] Lee, Y., & Yoon, J. (2005). Oxidation of phenolic contaminants during water treatment with ferrate (Fe(VI)): a kinetic study. Applied Chemistry, 9(1), 205-208.
- [15] Li, C. Mechanisms and performance of potassium ferrate in endocrine disrupting chemicals. PhD Thesis. Department of Civil and Structural Engineering. The Hong Kong Polytechnic University, 05.2006.https://www.researchgate.net/publication/478 70596_Mechanisms_and_performance_of_potassium _ferrate_in_endocrine_disrupting_chemicals
- [30.07.2019].
- [16] Han, Q., Dong, W., Wang, H., Liu, T., Tian, Y., & Song, X. (2018). Degradation of tetrabromobisphenol A by ferrate(VI) oxidation: performance, inorganic and organic products, pathway and toxicity control. Chemosphere, 198, 92-102.
- [17] Yang, B., Ying, G., Zhao, J., Zhou, L., & Chen, F. (2012). Removal of selected endocrine disrupting chemicals (EDC’s) and pharmaceuticals and personal care products (PPCP’s) during ferrate(VI) treatment of secondary wastewater effluents. Water Research, 46(7), 2194-2204.
- [18] Lee, Y., Yoon, J., & von Gunten, U. (2005). Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environmental Science Technology, 39(22), 8978-8984.
- [19] Wang, G., & Feng, L. (2013). Experimental studies on application of potassium ferrate for 3-methylphenol removal from solution in laboratory. Procedia Environmental Sciences, 18, 486-492.
- [20] Li, C., & Dong, F. (2016). Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environment. American Chemical Society.
- [21] Li, C., Li, X.Z., Graham, A.N.N., & Gao, N. (2008). The aqueous degradation of Bisphenol A and steroid estrogens by ferrate. Water Research, 42(1-2), 109-120.
- [22] Peings, V., Frayret, J., & Pigot, T. (2015). Mechanism for the oxidation of phenol by sulfatoferrate (VI): Comparison with various oxidants. Journal of Environmental Management, 1, 287-296.
- [23] Anquandah, G.A.K., & Sharma, V.K. (2009). Oxidation of octylphenol by ferrate(VI). Journal of Environmental Science and Health, Part A, 44(1), 62-66.
- [24] Lee, S.M., & Tiwari, D. (2009). Application of ferrate( VI) in treatment of industrial wastes containing metal-complexed cyanides: a green treatment. Journal of Environmental Science, 21(10), 1347-1352.
- [25] Lee, Y., & von Gunten, U. (2010). Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate(VI) and ozone) and non-selective oxidants (hydroxyl radical). Water Resources, 44(2), 555-566.
- [26] Yang, B., Ying, G.G., Chen, Z.F., Zhao, J.L, Peng, F.Q., & Chen, X.W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A. Water Research, 62, 211-219.
- [27] http://home.agh.edu.pl/nmos1/FUK/FChUKFCUK_ micelizacja.pdf
- [04.02.18].
- [28] Prochaska, K., Bielska, M., & Dopierała, K. (2009). Selected physicochemical aspects of membrane filtration. Membrany Teoria i Praktyka, III, 80-109.
- [29] http://encyklopedia.naukowy.pl/jodofory (04.02.18).
- [30] Janeczek, M., Jakubiec, J., & Mizerski, A. (2015). Evaluation of the wetting and extinguishing abilities of anionic and nonionic surfactants in conditions similar to practical by using methods based on NFPA 18 standard. Przemysł Chemiczny, 94(10), 1737-1741.
- [31] Eng, Y.Y., Sharma, V.K., & Ray, A.K. (2006). Ferrate (VI): green chemistry oxidant for degradation of cationic surfactant. Chemosphere, 63(10), 1785-1790.
- [32] Ebele, A.J., Abou-Elwafa, A., & Stuart, M.H. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Journal of Emerging Contaminants, 3(1), 1-16.
- [33] Jiang, J.Q. (2013). The role of ferrate(VI) in the remediation of emerging micro pollutants. Procedia Environmental Science, 18, 418-426.
- [34] Noorhasan, N., Patel, B., & Sharma, V.K. (2010). Ferrate(VI) oxidation of glycine and glycyloglycine: kinetics and products. Water Research, 44(3), 927-935.
- [35] Diaz-Cruz, M.S., & Barcelo, D. (2015). Personal Care Products in the Aquatic Environment, Springer International Publishing.
- [36] Wu, K., Wang, H., Zhou, C., Amina, Y., & Si, Y. (2018). Efficient oxidative removal of sulfonamide antibiotics from the wastewater by potassium ferrate. Journal of Advanced Oxidation Technologies, 21(1), 97-108.
- [37] Zhou, Z., & Jiang, J.Q. (2015). Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere, 119, 95-100.
- [38] Karlesa, A., De Vera, G.A.D, Dodd, M.C., Park, J., Espino, M.P.B., & Lee, Y. (2014). Ferrate(VI) oxidation of β-lactam antibiotics: reaction, antibacterial activity changes, and transformation products. Environmental Science Technology, 48(17), 10380-10389.
- [39] Anquandah, G., Ray, M.B., Ray, A.K., Al.-Abduly, A.J., & Sharma, V.K. (2011). Oxidation of X-ray compound ditrizoic acid by ferrate (VI). Environmental Technology, 32(3), 261-267.
- [40] Anquandah, G.A.K., Sharma, V.K., Panditi, V.R., Gardinali, P.R., Kim, H., & Oturan, M.A. (2013). Ferrate(VI) oxidation of propranolol: kinetics and products. Chemosphere, 91(1), 105-109.
- [41] Sharma, V.K., Zboril, R., & Varma, R.S. (2015). Ferrates: greener oxidants with multimodal action in water treatment technologies. Accounts of Chemical Research, 48(2), 182-191.
- [42] Huber, M.M., Canonica, S., Park, G., & von Gunten, U. (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science and Technology, 37(5), 1016-1024.
- [43] Sharma, V.K., Mishra, S.M., & Ray, A.K. (2006). Kinetic assessment of the potassium ferrate(VI) oxidation of antibacterial drug sulfamethoxazole. Chemosphere, 62, 128-134.
- [44] Sharma, V.K., Mishra, S.M., & Nesnas, N. (2006). Oxidation of sulfonamide antimicrobials by ferrate( VI). Environmental Science and Technology, 40(23), 7222-7227.
- [45] Zhao, J., Liu Y., Wang, Q., Fu, Y., Lu, X., & Bai, X. (2018). The self-catalysis of ferrate(VI) by its reactive byproducts or reductive substances for the degradation of diclofenac: kinetics, mechanism and transformation products. Separation and Purification Technology, 192, 412-418.
- [46] Rodriguez-Mozaz, S., Chamorro, S., Marti, E., & Huerta, B. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Resources, 69, 234-242.
- [47] Sharma, V.K., Johnson, N., Cizmas, L., McDonald, T.J., & Kim, H. (2016). A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 150, 702-714.
- [48] Feng, M., & Wang, X. (2016). Degradation of fluoroquinolone antibiotics by ferrate(VI): effects of water constituents and oxidized products. Water Research, 103, 48-57.
- [49] Thomas, M., Barbusiński, K., Kliś, S., Szpyrka, E., & Chyc, M. (2018). Synthetic textile wastewater treatment using potassium ferrate(VI) - application of Taguchi method for optimisation of experiment. Fibres Text. Estern Eur. 26(3), 111-117.
- [50] Kliś, S., Barbusiński, K., Thomas, M., & Mochnacka, A. (2019). Application of potassium ferrate(VI) for oxidation of selected pollutants in aquatic environment - short review. Architecture Civil Engineering Environment. 12(1), 129-137.
- [51] Thomas, M., Kliś, S., Barbusiński, K., & Chyc, M. (2019). Removal of Acid Red 27, Reactive Black 5 and Acid Green 16 from aqueous solutions using potassium ferrate(VI). Fibres Text. Estern Eur. 27(4), 71-75.
- The paper presents the application of potassium ferrate(VI) (K2FeO4) for the removal of selected pollutants from water and
- wastewater. The research results on the degradation of endocrine disrupting compounds (EDCs), decomposition of surfactants
- (SPCs), personal care products (PCPs), pharmaceuticals and their metabolites have been reviewed. Due to K2FeO4
- strong oxidizing and coagulating properties, high stability, non-toxic by-products and non-selectivity it is sometimes called
- “environmentally friendly oxidant”. Due to this reasons K2FeO4 can be a multi-purpose water and wastewater treatment
- chemical and an alternative to advanced oxidation processes (AOPs).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-da5bbf2d-4f3d-4192-a2a8-7e8e024b0260