Warianty tytułu
Języki publikacji
Abstrakty
The main traditional technique for commercial manufacturing of composite pipes is filament winding in which the winding angle and the discontinuity of the structure (caused by starting and ending points of the winding process) are two important matters of concern. In the present study, circular woven fabric with its orthogonal net-shaped continuous structure was produced from polyester yarns. Fabric was wet with epoxy and hand lay-up was used to manufacture the composite pipes. Composite pipes were subjected to internal hydrostatic pressure and their burst strength was recorded. In addition, tensile strength of flat laminas was assessed in the warp and weft directions. We estimated and analysed the failure strength of composite pipes using Tresca’s failure criterion and Finite Element (FE) modeling. The experimental burst strength was almost 23% more than the FE model and 77% more than the theoretical estimate.
Czasopismo
Rocznik
Tom
Strony
100--108
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- College of Textiles, North Carolina State University, Raleigh, NC, USA, 1000 Main Campus Dr. Raleigh, NC 27695, hamid@ncsu.edu
autor
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran, 424 Hafez Avenue, PO Box 15875–4413, Tehran, Iran
autor
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran, 424 Hafez Avenue, PO Box 15875–4413, Tehran, Iran
autor
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran, 424 Hafez Avenue, PO Box 15875–4413, Tehran, Iran
autor
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran, 424 Hafez Avenue, PO Box 15875–4413, Tehran, Iran
Bibliografia
- [1] Czel G., Czigany, T., (2012). Image processing assisted stress estimation method for ring compression tests of polymer composite pipes at large displacements. Journal of Composite Materials, 46(22), 2803-2809.
- [2] Arikan H., (2010). Failure analysis of (+/− 55 degrees)(3) filament wound composite pipes with an inclined surface crack under static internal pressure. Composite Structures, 92(1), 182-187.
- [3] Diniz Melo J. D., Levy Neto, F., Barros, G. d. A., de Almeida Mesquita, F. N., (2011). Mechanical behavior of GRP pressure pipes with addition of quartz sand filler. Journal of Composite Materials, 45(6), 717-726.
- [4] Sari M., Karakuzu, R., Deniz, M. E., Icten, B. M., (2012). Residual failure pressures and fatigue life of filament-wound composite pipes subjected to lateral impact. Journal of Composite Materials, 46(15), 1787-1794.
- [5] Onder A., Sayman, O., Dogan, T., Tarakcioglu, N., (2009). Burst failure load of composite pressure vessels. Composite Structures, 89(1), 159-166.
- [6] Xia M., Takayanagi, H., Kemmochi, K., (2001). Analysis of multi-layered filament-wound composite pipes under internal pressure. Composite Structures, 53(4), 483-491.
- [7] Bakaiyan H., Hosseini, H., Ameri, E., (2009). Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations. Composite Structures, 88(4), 532-541.
- [8] Frost S. R., Cervenka, A., (1994). Glass-fiber-reinforced epoxy matrix filament-wound pipes for use in the oil industry. Composites Manufacturing, 5(2), 73-81.
- [9] Kruijer M. P., Warnet, L. L., Akkerman, R., (2006). Modelling of the viscoelastic behaviour of steel reinforced thermoplastic pipes. Composites Part A-Applied Science and Manufacturing, 37(2), 356-367.
- [10] Rosenow M. W. K., (1984). Wind angle effects in glass fiber-reinforced polyester filament wound pipes. Composites, 15(2), 144-152.
- [11] Kitching R., Hose, D. R., (1989). Laminated pipe bends of mixed wall construction subjected to an inplane bending moment. Journal of Strain Analysis for Engineering Design, 24(3), 127-138.
- [12] Kitching R., Myler, P., Tan, A. L., (1988). Grp pipe bends subjected to out-of-plane flexure with and without pressure. Journal of Strain Analysis for Engineering Design, 23(4), 187-199.
- [13] Hwang T., Park, J., Kim, H., (2012). Evaluation of fiber material properties in filament-wound composite pressure vessels. Composites Part A-Applied Science and Manufacturing, 43(9), 1467-1475.
- [14] Samanci A., Avci, A., Tarakcioglu, N., Sahin, O. S., (2008). Fatigue crack growth of filament wound GRP pipes with a surface crack under cyclic internal pressure. Journal of Materials Science, 43(16), 5569-5573.
- [15] Samanci A., Tarakcioglu, N., Akdemir, A., (2012). Fatigue failure analysis of surface-cracked (+/− 45 degrees) (3) filament-wound GRP pipes under internal pressure. Journal of Composite Materials, 46(9), 1041-1050.
- [16] Cabrera N. O., Alcock, B., Klompen, E. T. J., Peijs, T., (2008). Filament winding of co-extruded polypropylene tapes for fully recyclable all-polypropylene composite products. Applied Composite Materials, 15(1), 27-45.
- [17] Arellano M. T., Crouzeix, L., Douchin, B., Collombet, F., Hernandez Moreno, H., et al, (2010). Strain field measurement of filament-wound composites at +/− 55 degrees using digital image correlation: An approach for unit cells employing flat specimens. Composite Structures, 92(10), 2457-2464.
- [18] Ellyin F., Carroll, M., Kujawski, D., Chiu, A. S., (1997). The behavior of multidirectional filament wound fibreglass/epoxy tubulars under biaxial loading. Composites Part A-Applied Science and Manufacturing, 28(9-10), 781-790.
- [19] Baranger E., Allix, O., Blanchard, L., (2009). A computational strategy for the analysis of damage in composite pipes. Composites Science and Technology, 69(1), 88-92.
- [20] Buarque E. N., d’Almeida, J. R. M., (2007). The effect of cylindrical defects on the tensile strength of glass fiber/vinyl-ester matrix reinforced composite pipes. Composite Structures, 79(2), 270-279.
- [21] Kitching R., Hose, D. R., Preistner, R., Hashemizadeh, S. H., (1997). Fracture of glass-reinforced plastic pipes of mixed wall construction under pressure loading. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 211(E4), 223-246.
- [22] Yu H. N., Kim, S. S., Hwang, I. U., Lee, D. G., (2008). Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes. Composite Structures, 86(1-3), 285-290.
- [23] Fawzia S., Al-Mahaidi, R., Zhao, X. L., Rizkalla, S., (2007). Strengthening of circular hollow steel tubular sections using high modulus CFRP sheets. Construction and Building Materials, 21(4), 839-845.
- [24] Haedir J., Zhao, X., (2011). Design of short CFRP-reinforced steel tubular columns. Journal of Constructional Steel Research, 67(3), 497-509.
- [25] Amid H., Jeddi, A. A. A., Salehi, M., Dabiryan, H., (2011). Suitability of tubular woven fabric as the reinforcement of composite pipes. Proceedings of ATC-11Daegu, South Korea.
- [26] Sharma S. B., Potluri, P., Atkinson, J., Porat, I., (2001). Mapping of tubular woven composite preforms on to doubly-curved surfaces. Computer-Aided Design, 33(14), 1035-1048.
- [27] Popov E. P., (1990). Engineering Mechanics of Solids. Prentice Hall (Englewood Cliffs, N.J.).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-da57d575-8ce8-4a8b-b004-7c46f9b60b40