Warianty tytułu
Języki publikacji
Abstrakty
Power electronic interfaces (PEI) play an important role in future power systems. From planning and operation perspectives, there is a need to model PEIs for power flow applications. In this paper, precise modeling of a DC-DC boost converter for load flow analysis is presented, which can be generalized for other kinds of PEIs. As an application, the presented model is employed for uncertainty analysis of systems, considering uncertainty in wind power generation. The simulations are performed on a wind farm DC distribution network. The results demonstrate the robustness of the presented load flow algorithm.
Czasopismo
Rocznik
Tom
Strony
28--34
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran, h.feyzi92@ms.tabrizu.ac.ir
autor
- Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran, r_gholizadeh@iau-ahar.ac.ir
autor
- Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran;, sabahi@tabrizu.ac.ir
autor
- Smart Distribution Grid Research Laboratory, Department of Electrical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran, s.najafi@azaruniv.edu
Bibliografia
- [1] S. A. Mohammed, M. Abdel-Moamen, B. Hasanin, A review of the state-of-the-art of power electronics for power system applications, Quest Journal of Electronics and Communication Engineering Research (JECER) 1 (1) (2013) 43–52.
- [2] C. Meyer, R. W. De Doncker, Power electronics for modern mediumvoltage distribution systems, in: Power Electronics and Motion Control Conference, 2004. IPEMC 2004. The 4th International, Vol. 1, IEEE, 2004, pp. 58–66.
- [3] T. Kaipia, P. Peltoniemi, J. Lassila, P. Salonen, J. Partanen, Power electronics in smartgrids-impact on power system reliability, in: CIRED Seminar 2008 Smart Grids for Distribution, paper no. 0124, 2008, pp. 83–83.
- [4] F. Blaabjerg, Z. Chen, S. B. Kjaer, Power electronics as efficient interface in dispersed power generation systems, IEEE transactions on power electronics 19 (5) (2004) 1184–1194.
- [5] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. PortilloGuisado, M. M. Prats, J. I. León, N. Moreno-Alfonso, Power-electronic systems for the grid integration of renewable energy sources: A survey, IEEE Transactions on industrial electronics 53 (4) (2006) 1002–1016.
- [6] Z. Chen, J. M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines, IEEE Transactions on power electronics 24 (8) (2009) 1859–1875.
- [7] S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, A review of single-phase grid-connected inverters for photovoltaic modules, IEEE transactions on industry applications 41 (5) (2005) 1292–1306.
- [8] A. Kirubakaran, S. Jain, R. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews 13 (9) (2009) 2430–2440.
- [9] D. Divan, H. Johal, Distributed facts—a new concept for realizing grid power flow control, IEEE Transactions on Power Electronics 22 (6) (2007) 2253–2260.
- [10] M. Sabahi, A. Y. Goharrizi, S. H. Hosseini, M. B. B. Sharifian, G. B. Gharehpetian, Flexible power electronic transformer, IEEE Transactions on Power Electronics 25 (8) (2010) 2159–2169.
- [11] X.Wang, J. M. Guerrero, F. Blaabjerg, Z. Chen, A review of power electronics based microgrids, Journal of Power Electronics 12 (1) (2012) 181–192.
- [12] O. Zavalani, M. Braneshi, A. Spahiu, L. Prifti, Potentials of power electronics in LV electricity distribution systems in Albania, in: Power Electronics and Motion Control Conference (EPE/PEMC), 2010 14th International, IEEE, 2010, pp. 59–64.
- [13] M. Hosseini, H. Shayanfar, M. Fotuhi-Firuzabad, Modeling of unified power quality conditioner (UPQC) in distribution systems load flow, Energy Conversion and Management 50 (6) (2009) 1578–1585.
- [14] M. Farhoodnea, A. Mohamed, H. Shareef, H. Zayandehroodi, Optimum placement of active power conditioner in distribution systems using improved discrete firefly algorithm for power quality enhancement, Applied Soft Computing 23 (2014) 249–258.
- [15] P. A. N. Garcia, J. L. R. Pereira, S. Carneiro, Voltage control devices models for distribution power flow analysis, IEEE Transactions on Power Systems 16 (4) (2001) 586–594.
- [16] P. Yan, A. Sekar, Analysis of radial distribution systems with embedded series FACTS devices using a fast line flow-based algorithm, IEEE Transactions on Power Systems 20 (4) (2005) 1775–1782.
- [17] M. Z. Kamh, R. Iravani, A unified three-phase power-flow analysis model for electronically coupled distributed energy resources, IEEE Transactions on Power Delivery 26 (2) (2011) 899–909.
- [18] M. Zhao, Z. Chen, F. Blaabjerg, Modeling of DC/DC converter for DC load flow calculation, in: Power Electronics and Motion Control Conference, 2006. EPE-PEMC 2006. 12th International, IEEE, 2006, pp. 561–566.
- [19] M. Zhao, Z. Chen, F. Blaabjerg, Load flow analysis for variable speed offshore wind farms, IET Renewable Power Generation 3 (2) (2009) 120–132.
- [20] S. Lundberg, Performance comparison of wind park configurations, Tech. rep., Chalmers University of Technology (2003).
- [21] N. Nikmehr, S. N. Ravadanegh, Optimal power dispatch of multimicrogrids at future smart distribution grids, IEEE Transactions on Smart Grid 6 (4) (2015) 1648–1657.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-da130c6e-5897-4c56-a466-e7c55011ac3d