Warianty tytułu
Języki publikacji
Abstrakty
Complex neuro-degenerative disorders affect the intrinsic topological architecture of brain connectivity. There are very few studies concentrating on the occurrence of modular changes in the structural and functional connectome of people diagnosed with Schizophrenia. In this study, group averaged analysis on modular organization of 15 healthy and 12 Schizophrenic subjects were performed to understand the topological alterations occurring in brain networks of diseased against normal. The major contributing regions for changes in optimal brain architecture were also identified. It also involves the investigation of individual subject's functional connectivity and the attempts were made to extract the modular specific roles of brain regions through supervised association rule mining. On comparison with group average measurements, it was found to produce similar results and it was understood that inter and intra-module connections evidently varied in Schizophrenia because of alterations in extremely organized modular architecture. This is believed to provide new insights in understanding the complex neuro-degenerative disorder through analysis on modular organization of functional brain networks. Highly influential regions were also determined. These regions were found to be potential biomarkers for Schizophrenia diagnosis.
Czasopismo
Rocznik
Tom
Strony
397--412
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wykr.
Twórcy
autor
- College of Engineering, Anna University, Guindy, Chennai 600025, India, rgeetha@yahoo.com
autor
- College of Engineering, Anna University, Guindy, Chennai 600025, India, sivaselvik@yahoo.co.in
Bibliografia
- [1] Kneisl C, Trigoboff E. Contemporary psychiatric – mental health nursing. 2nd ed. London: Pearson Prentice Ltd.; 2009.
- [2] American Psychiatric Association. Task Force on DSM-IV, Diagnostic and statistical manual of mental disorders: DSM-IV-TR. American Psychiatric Pub.; 2000.
- [3] Carson VB. Mental health nursing: the nurse–patient journey. W.B. Saunders; 2000. p. 638.
- [4] Hirsch SR, Weinberger DR. The symptoms of Schizophrenia. Schizophrenia 2003;25–33.
- [5] Brunet-Gouet E, Decety J. Social brain dysfunctions in Schizophrenia: a review of neuroimaging studies. Psychiatry Res 2006;148(2–3):75–92.
- [6] Van Os J, Kapur S. Schizophrenia. Lancet 2009;374 (9690):635–45.
- [7] Sims A. Symptoms in the mind: an introduction to descriptive psychopathology. Philadelphia: W. B. Saunders; 2002.
- [8] Velligan DI, Alphs LD. Negative symptoms in Schizophrenia: the importance of identification and treatment. Psychiatr Times 2008;25(3).
- [9] Wyatt RJ, Henter I, Leary MC, Taylor E. An economic evaluation of Schizophrenia-1991. Soc Psychiatry Psychiatr Epidemiol 1995;30:196–205.
- [10] Bhugra D. The global prevalence of Schizophrenia. PLoS Med 2005;2. e151:quize175.
- [11] Rice DP. The economic impact of Schizophrenia. J Clin Psychiatry 1999;60(Suppl. 1):4–6.
- [12] McGlashan TH. Early detection and intervention of Schizophrenia: rationale and research. Br J Psychiatry Suppl 1998;172:3–6.
- [13] Woodward ND, Waldle B, Rogers B, Tibbo P, Seres P, Purdon SE. Abnormal prefrontal cortical activity and connectivity during response selection in first episode psychosis, chronic Schizophrenia and unaffected siblings of individuals with Schizophrenia. Schizophr Res 2009;109:182–90.
- [14] Whitfield Gabriell S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in Schizophrenia and in first degree relatives of persons with Schizophrenia. Proc Natl Acad Sci U S A 2009;106(4):1279–84.
- [15] (a) McGuffin P, Gottesman II. Risk factor for Schizophrenia. N Engl J Med 1999;341:370–1; (b) Mesulam MM. From sensation to cognition. Brain 1998;121(6):1013–52.
- [16] Konrad A, Winterer G. Disturbed structural connectivity in Schizophrenia primary factor in pathology or epiphenomenon? Schizophr Bull 2008;34(1):72–92.
- [17] Calhoun VD, Eichele T, Pearlson G. Functional brain networks in Schizophrenia: a review. Front Hum Neurosci 2009;3(17).
- [18] Liang M, Zhou Y, Jiang T, Liu Z, Tian L, Liu H, et al. Widespread functional disconnectivity in Schizophrenia with resting state functional magnetic resonance imaging. Neuroreport 2006;17(2):209–13.
- [19] Shenton ME, Dickey CC, Furmin M, McCarley RW. A review of MRI findings in Schizophrenia. Schizophr Res 2001;49:1–52.
- [20] Karlsgodt KH, Sun DQ, Cannon TD. Structural and Functional abnormalities in Schizophrenia. Curr Direct Psychol Sci 2010;19:226–31.
- [21] Niznikiewicz MK, Kubicki M, Shenton ME. Recent structural and functional imaging findings in Schizophrenia. Curr Opin Psychiatry 2003;16:123–47.
- [22] Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 1999;8:151–6.
- [23] Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 2008;21 (4):424–30.
- [24] Fox MD, Greicius MD. Clinical applications of resting state functional connectivity. Front Syst Neurosci 2010;4(19).
- [25] Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting state functional connectivity in major depression: abnormality increased contributions from subgenual cingulated cortex and thalamus. Biol Psychiatry 2007;62(5):429–37.
- [26] Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B: Biol Sci 2013;360(1457):1001–13.
- [27] Li SJ, Li Z, Wu GH, Zhang MJ, Franczak M, Antuono PG. Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 2002;225:253–9.
- [28] Greicius MD, Srivatsava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637–42.
- [29] Wang K, Jiang TZ, Liang M, Wang L, Tian LX, Zhang XQ, et al. Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med Image Comput Comput Assist Inter Miccai 2006;340–7.
- [30] Superkar K, Menon V, Rubin D, Musen M, Greicius MD. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput Biol 2008;4:e1000100.
- [31] Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, Jiang TZ, et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage 2008;40(1):110–20.
- [32] Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, et al. Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode Schizophrenia using resting-state Fmri. Neurosci Lett 2007;417(3):297–302.
- [33] Zhou Y, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimers disease. Brain 2010;133(Pt 5):1352–67.
- [34] Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, et al. Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 2007;33(4):1004–12.
- [35] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186–98.
- [36] Meunier D, Lambiotte R, Bullmore ET. Modular and hierarchically modular organization of brain networks. Front Neurosci 2010;4:200.
- [37] Kashtan N, Alon U. Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci U S A 2005;102 (39):13773–8.
- [38] Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. NeuroImage 2009;44:715–23.
- [39] Alexander-Bloch A, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, et al. Disrupted modularity and local connectivity of functional networks in childhood-onset Schizophrenia. Front Syst Neurosci 2010;4(147).
- [40] Gogtay N, Lu A, Leow AD, Klunder AD, Lee AD, Chavez A, et al. Three-dimensional brain growth abnormalities in childhood-onset Schizophrenia visualized by using tensor-based morphometry. Proc Natl Acad Sci U S A 2008;105:15979–84.
- [41] Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, et al. Disrupted small-world networks in Schizophrenia. Brain 2008;131:945–61.
- [42] Wang L, Metzak PD, Honer WG, Woodward TS. Impaired efficiency of functional networks underlying episodic memory-for-context in Schizophrenia. J Neurosci 2010;30:13171–9.
- [43] Yu Q, Allen E, Sui J, Arbabshirani M, Pearlson G, Calhoun V. Brain connectivity networks in Schizophrenia underlying resting state functional magnetic resonance imaging. Curr Top Med Chem 2012;12:2415–25.
- [44] Van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W, et al. Abnormal rich club organization and functional brain dynamics in Schizophrenia. JAMA Psychiatry 2013;70:783–92.
- [45] He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, et al. Uncovering intrinsic modular organization of spontaneous brain activity in human; 2009.
- [46] Lyoo IK, Yoon S, Renshaw PF, Hwang J, Bae S, Musen G, et al. Network-level structural abnormalities of cerebral cortex in type 1 diabetes mellitus; 2013.
- [47] Liu Z, Ke L, Liu H, Huang W, Hu Z. Changes in topological organization of functional PET brain network with normal aging. PLOS ONE 2014;9(2).
- [48] Zheng G, Zhang L, Zhang LJ, Li Q, Pan Z, Liang X, et al. Altered modular organization of functional connectivity networks in cirrhotic patients without overt hepatic encephalopathy. BioMed Res Int 2014;1–11.
- [49] Sun Y, Yin Q, Fang R, Yan X, Wang Y, Bezerianous A, et al. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease. PLOS ONE 2014;9(5).
- [50] Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLOS Biol 2008;6:e159.
- [51] Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. NeuroImage 2010;53:1197–207.
- [52] Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002;15(1):273–89.
- [53] He Y, Evans A. Graph theoretical modeling of brain connectivity. Curr Opin Neurol 2010;23:1–10.
- [54] Hwang K, Hallquist MN, Luna B. The development of hub architecture in the human functional brain network. Cereb Cortex 2013;23:2380–93.
- [55] Joyce KE, Laurienti PJ, Burdette OH, Hayasaka S. A new measure of centrality for brain networks. PLOS ONE 2010;5: e12200.
- [56] Newman MEJ. Finding community structure in networks using eigen vector of matrices. Phys Rev E 2006;74:036104; PNAS 2006;23:8577–82.
- [57] Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E 2006;74:016110.
- [58] Guimera R, Amaral LA. Cartography of complex networks: modules and universal roles. J Stat Mech 2005;1–17.
- [59] Guimera R, Amaral LA. Functional cartography of complex metabolic networks. Nature 2005;433:895–900.
- [60] Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. Proc. 1993 ACM SIGMOD International Conference on Management of Data – SIGMOD '93; 1993.
- [61] Ndour C, Dossou-Gbété S. Classification approach based on association rules mining for unbalanced data; 2012, arXiv:1202.5514 [stat.ML].
- [62] Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature 1999;402:47–52.
- [63] Gaser C, Nenadic I, Volz H-P, Büchel C, Sauer H. Neuroanatomy of 'Hearing Voices': a frontotemporal brain structural abnormality associated with auditory hallucinations in Schizophrenia. Cereb Cortex 2004;14 (1):91–6.
- [64] Camchong J, MacDonald AW, Bell C, Mueller BA, Lim KO. Altered functional and anatomical connectivity in Schizophrenia. Schizophr Bull 2011;37(3):640–50.
- [65] Müller VI, Cieslik EC, Laird AR, Fox PT, Eickhoff SB. Dysregulated left inferior parietal activity in Schizophrenia and depression: functional connectivity and characterization. Front Hum Neurosci 2013;7.
- [66] Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Gaser C, et al. Increased parahippocampal and lingual gyrification in first-episode Schizophrenia. Schizophr Res 2010;123(2–3):137–44.
- [67] Ferro A, Roiz-Santiáñez R, Ortíz-García de la Foz V, Ayesa- Arriola R, Tordesillas-Gutiérrez D, De La Fuente N, et al. Postcentral gyrus in patients at first episode of Schizophrenia: a longitudinal structural mri study. Eur Psychiatry 2014;29(Sp. 1).
- [68] Niznikiewicz M, Donnino R, McCarley RW, Nestor PG, Iosifescu DV, O'Donnell B, et al. Abnormal angular gyrus asymmetry in Schizophrenia. Am J Psychiatry 2000;157 (3):428–37.
- [69] Nierenberg J, Salisbury DF, Levitt JJ, David EA, McCarley RW, Shenton ME. Reduced left angular gyrus volume in first- episode Schizophrenia. Am J Psychiatry 2005;162(8):1539–41.
- [70] Shinn AK, Baker JT, Cohen BM, Öngür D. Functional connectivity of left Heschl's gyrus in vulnerability to auditory hallucinations in Schizophrenia. Schizophr Res 2013;143(2–3):260–8.
- [71] Preston AR, Shohamy D, Tamminga CA, Wagner AD. Hippocampal function, declarative memory, and schizophrenia: anatomic and functional neuroimaging considerations. Curr Neurol Neurosci Rep 2005;5: 249–56.
- [72] Li HJ, Chan RC, Gong QY, Liu Y, Liu SM, Shum D, et al. Facial emotion processing in patients with Schizophrenia and their non-psychotic siblings: a functional magnetic resonance imaging study. Schizophr Res 2012;134(2– 3):143–50.
- [73] Ruggieri S. Efficient C4.5. IEEE Trans Knowl Data Eng 2001;14 (2):438–44.
- [74] Xia M, Wang J, He Y. BrainNet viewer: a network visualization tool for human brain connectomics. PLOS ONE 2013;8(7).
- [75] Tang Y, Wang L, Cao F, Tan L. Identify Schizophrenia using resting-state functional connectivity: an exploratory research and analysis. Biomed Eng Online 2012;11(50):1–16.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d9f4ec56-2602-4cf2-85b2-d5abfa2e5ff7