Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 49, nr 2 | 550--565
Tytuł artykułu

Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to analyse theoretically the possibilities of the development of a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers and to study into the material science grounds of synthesis and/or production and formulation of such materials’ structure and properties and to characterise and model their structure and properties depending on the compositional, phase and chemical composition and the applied synthesis and/or production and/or processing processes, without the attitude towards any direct practical application or use, but with confirming the highly probable future application areas, using the unexpected effects of formulating such materials’ functional properties. Design/methodology/approach: In general, the study is of priority cognitive importance as theoretical considerations and the author’s initial analyses related to technology foresight concerning this group of issues as well as sporadical results of research provided in the literature, usually in its incipient phase, indicating a great need to intensify scientific research, to develop the new groups of materials with quite unexpected predictable effects, resulting from the use of nanofibers for fabricating super advanced composite and porous materials. Findings: The description of the state of the art for the subject of the study has been limited to the issues initially selected with an analysis with the method of weighted scores. Practical implications: The outcoming materials may have direct influence on the development of electronics and photonics, medicine and pharmacy, environmental protection, automotive industry, space industry, machine industry, textile and clothing industry, cosmetic industry, agriculture and food sector. Originality/value: The value of this paper lies in the fact that it proposes a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers.
Wydawca

Rocznik
Strony
550--565
Opis fizyczny
Bibliogr. 120 poz., rys., tab.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, leszek.dobrzanski@polsl.pl
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, 2004.
  • [2] R.W. Kelsall, I.W. Hamley, M. Geoghegan, Nanotechnologies, PWN, Warsaw, 2008 (in Polish).
  • [3] B. Bhushan (ed.), Springer Handbook of Nanotechnology, Second Edition, Springer, 2007.
  • [4] C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology, John Wiley & Sons, 2003.
  • [5] A.A. Tseng, Nanofabrication: Fundamentals and Applications, World Scientific Publishing Co Ltd, 2007.
  • [6] Y. Champion, H.-J. Fecht, Nano-Architectured and Nanostructured Materials Fabrication, Control and Properties, Wiley-VCH, Weinheim, 2004.
  • [7] M. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, Wiley-VCH, Weinheim, 2004.
  • [8] 2010 Nanotechnology Research Review, BCC Research Report NAN047B, January, 2011.
  • [9] McWilliams, A., Nanotechnology: A Realistic Market Assessment, BCC Research Report NAN031D, July, 2010.
  • [10] M. Gagliardi, Nanofibers: Technologies and Developing Markets, BCC Research Report NAN043A, June, 2007.
  • [11] M. Gagliardi, Nanofibers: Technologies and Developing Markets, BCC Research Report NAN043B, June, 2010.
  • [12] A. McWilliams, Nanocomposites, Nanoparticles, Nanoclays, and Nanotubes, BCC Research Report NAN021D, January, 2010.
  • [13] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science Engineering 44/2 (2010) 69-86.
  • [14] E. Neubauer, M. Kitzmantel, M. Hulman, P. Angerer, Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes, Composites Science and Technology 70 (2010) 2228-2236.
  • [15] C.F. Deng, D.Z. Wang, X.X. Zhang, A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Materials Science and Engineering A 444 (2007) 138-145.
  • [16] T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, Processing of Carbon Nanotube Reinforced Aluminum Composite, Journal of Materials Research 13/9 (1998) 2445-2449.
  • [17] G. Zhao, F. Deng, Electroless Plating of Ni-P-CNTs Composite Coating, Key Engineering Materials 280-283 (2005) 1445-1448.
  • [18] T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, M. Seki, Carbon Nanotube/Aluminium Composites with Uniform Dispersion, Materials Transactions 45/2 (2004) 602-604.
  • [19] H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Investigation of carbon nanotube reinforced aluminum matrix composite materials, Composites Science and Technology 70 (2010) 546-550.
  • [20] C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, Nanotechnology 17 (2006) 7-12.
  • [21] Y. Shimizu, S. Miki, T. Soga, I. Itoh, H. Todoroki, T. Hosono, K. Sakaki, T. Hayashi, Y.A. Kim, M. Endo, S. Morimoto, A. Koide, Multi-walled carbon nanotube-reinforced magnesium alloy composites, Scripta Materialia 58/4 (2008) 267-270.
  • [22] Q. Li, A. Viereckl, C.A. Rottmair, R.F. Singer, Improved processing of carbon nanotube/magnesium alloy composites, Composites Science and Technology 69 (2009) 1193-1199.
  • [23] H. Fukuda, K. Kondoh, J. Umeda, B. Fugetsu, Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6 wt.% Al alloy matrix composites reinforced with carbon nanotubes, Composites Science and Technology 71 (2011) 705-709.
  • [24] Y. Park, K. Cho, I. Park, Y. Park, Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes, Procedia Engineering 10 (2011) 1446-1450.
  • [25] P. Quang, Y.G. Jeong, S.H. Hong, H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key Engineering Materials 326-328 (2006) 325-328.
  • [26] J.P. Tu, Y.Z. Yang, L.Y. Wang, X.C. Ma, X.B. Zhang, Tribological properties of carbon-nanotube-reinforced copper composites, Tribology Letters 10/4 (2001) 225-228.
  • [27] K.T. Kim, S.I. Cha, S.H. Hong, S.H. Hong, Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Materials Science Engineering A 430/1-2 (2006) 27-33.
  • [28] S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, S.H. Hong, Extraordinary Strengthening Effect of Carbon Nanotubes in Metal-Matrix Nanocomposites Processed by Molecular-Level Mixing, Advanced Materials 17/11 (2005) 1377-1381.
  • [29] K.S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Holler, U. Wienecke, S. Roth, H.-J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Composites Science and Technology 70/16 (2010) 2253-2257.
  • [30] S. Cho, K. Kikuchi, T. Miyazaki, K. Takagi, A. Kawasaki, T. Tsukada, Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Materialia 63 (2010) 375-378.
  • [31] K.T. Kim, J. Eckert, G. Liu, J.M. Park, B.K. Limd, S.H. Hongd, Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing, Scripta Materialia 64 (2011) 181-184.
  • [32] M.H. Al-Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites, Carbon 47 (2009) 2-22.
  • [33] A. Bachmatiuk, E. Borowiak-Palen, M.H. Rümmeli, C. Kramberger, H-W. Hübers, T. Gemming, T. Pichler, R.J. Kalenczuk, Facilitating the CVD synthesis of seamless double-walled carbon nanotubes, Nanotechnology 18 (2007) 275610.
  • [34] A. Bachmatiuk, Research into production technology and properties of carbon nanotubes, Doctoral dissertation, Szczecin University of Technology, Szczecin, 2008 (in Polish).
  • [35] N. Darsono, D.-H. Yoon, J. Kim, Milling and dispersion of multi-walled carbon nanotubes in texanol, Applied Surface Science 254/11 (2008) 3412-3419.
  • [36] X.H. Chen, J.C. Peng, X.Q. Li, F.M. Deng, J.X. Wang, W.Z. Li, Tribological behavior of carbon nanotubes -reinforced nickel matrix composite coatings, Journal of Materials Science Letters 20/22 (2001) 2057-2060.
  • [37] X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Analytical Biochemistry 363/1 (2007) 143-150.
  • [38] X. Chen, J. Xia, J. Peng, W. Li, S. Xie, Carbon-nanotube metal-matrix composites prepared by electroless plating, Composites Science and Technology 60/2 (2000) 301-306.
  • [39] C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, Q. Cui, An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al-Matrix Composites, Advanced Materials 19/8 (2007) 1128-1132.
  • [40] M. Heintze, V. Brüser, W. Brandl, G. Marginean, H. Bubert, S. Haiber, Surface functionalisation of carbon nano-fibres in fluidised bed plasma, Surface and Coatings Technology 174-175 (2003) 831-834.
  • [41] G.A. Gelves, B. Lin, J.A. Haber, U. Sundararaj, Enhancing Dispersion of Copper Nanowires in Melt-Mixed Polystyrene Composites, Journal of Polymer Science: Part B: Polymer Physics 46 (2008) 2064-2078.
  • [42] G.A. Gelves, B. Lin, U. Sundararaj, J.A. Haber, Low electrical percolation threshold of silver and copper nanowires in polystyrene composites, Advanced Functional Materials 16/18 (2006) 2423-2430.
  • [43] Z. Huo, C.-K. Tsung, W. Huang, X. Zhang, P. Yang, Sub-Two Nanometer Single Crystal Au Nanowires, Nano Letters 8/7 (2008) 2041-2044.
  • [44] X. Lu, M.S. Yavuz, H.-Y. Tuan, B.A. Korgel, Y.J. Xia, Ultrathin Gold Nanowires Can Be Obtained by Reducing Polymeric Strands of Oleylamine-AuCl Complexes Formed via Aurophilic Interaction, Journal of the American Chemical Society 130/28 (2008) 8900-8901.
  • [45] C. Wang, Y. Hu, C.M. Lieber, S. Sun, Ultrathin Au Nanowires and Their Transport Properties, Journal of the American Chemical Society 130/28 (2008) 8902-8903.
  • [46] F. Kim, K. Sohn, J. Wu, J. Huang, Chemical Synthesis of Gold Nanowires in Acidic Solutions, Journal of the American Chemical Society 130/44 (2008) 14442-14443.
  • [47] N.R. Jana, L. Gearheart, C.J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chemical Communications 7 (2001) 617-618.
  • [48] Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline Silver Nanowires by Soft Solution Processing, Nano Letters 2/2 (2002) 165-168.
  • [49] H. Choi, S.-H. Park, Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition, Journal of the American Chemical Society 126/20 (2004) 6248-6249.
  • [50] M.E. Toimil Molares, E.M. Höhberger, Ch. Schaeflein, R. Blick, H.R. Neumann, C. Trautmann, Electrical characterization of electrochemically grown single copper nanowires, Applied Physics Letters 82/13 (2003) 2139-2141.
  • [51] M.E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter, Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes, Advanced Materials 13/1 (2001) 62-65.
  • [52] N.J. Gerein, J.A. Haber, Effect of ac Electrodeposition Conditions on the Growth of High Aspect Ratio Copper Nanowires in Porous Aluminum Oxide Templates, Journal of Physical Chemistry B 109/37 (2005) 17372-17385.
  • [53] Z. Liu, Y. Yang, J. Liang, Z. Hu, S. Li, S. Peng, Y. Qian, Synthesis of Copper Nanowires via a Complex-Surfactant-Assisted Hydrothermal Reduction Process, Journal of Physical Chemistry B 107/46 (2003) 12658-12661.
  • [54] M.-Y. Yen, C.-W. Chiu, C.-H. Hsia, F.-R. Chen, J.-J. Kai, C.-Y. Lee, H.-T. Chiu, Synthesis of Cable-Like Copper Nanowires, Advanced Materials 15/3 (2003) 235-237.
  • [55] A. Filankembo, M.-P. Pileni, Is the template of self-colloidal assemblies the only factor that controls nanocrystal shapes?, Journal of Physical Chemistry B 104/25 (2000) 5865-5868.
  • [56] M.-P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nature Materials 2 (2003) 145-150.
  • [57] Y.Y. Wu, P.D. Yang, Direct observation of vapor-liquid-solid nanowire growth, Journal of the American Chemical Society 123/13 (2001) 3165-3166.
  • [58] K.K. Caswell, C.M. Bender, C.J. Murphy, Surfactantless Wet Chemical Synthesis of Silver Wires, Nano Letters 3/5 (2003) 667-669.
  • [59] B. Wiley, Y. Sun, Y. Xia, Synthesis of Silver Nanostructures with Controlled Shapes and Properties, Accounts of Chemical Research 40/10 (2007) 1067-1076.
  • [60] O. Krichevski, E. Tirosh, G. Markovich, Formation of gold-silver nanowires in thin surfactant solution films, Langmuir 22/3 (2006) 867-870.
  • [61] A. Halder, N. Ravishankar, Ultrafine single-crystalline gold nanowire arrays by oriented attachment, Advanced Materials 19 (2007) 1854-1858.
  • [62] L. Ślusarski, Polymeric materials and their influence on the development of material engineering in Poland; http://funda-cjarozwojunauki.pl/res/Tom2/4_%C5%9Alusarski.pdf
  • [63] „Crude oil”, United States Government Accountability Office, Washington, 2007.
  • [64] D. Smock, Bioplastics: Technologies and Global Markets, BCC Research Report PLS050A, September, 2010.
  • [65] http://www.plastech.pl/wiadomosci/artykul_1216_1/Analiza-rynku-polimerow-biodegradowalnych
  • [66] 2010 Plastics Research Review, BCC Research Report PLS051A, January, 2011.
  • [67] K. Endo, N. Kubo, T. Ishida, Polymerization of Cyclic-Disulphides and Formation of Gel Structure Containing Polycatenane, Kautschuk Gummi, Kunstoffe 61 (2008) 176-179.
  • [68] P. Cordier, F. Tournilhac, C. Soulie-Ziakowic, L. Leibler, Self-healing and thermoreversible rubber from upramole-cular assembly, Nature 451 (2008) 977-980.
  • [69] M. Schlechter, Composites: Resins, Fillers, Reinforcements, Natural Fibers & Nanocomposites, BCC Research Report PLS029C, January, 2011.
  • [70] National Research Council of the National Academies, High-Performance Structural Fibres for Advanced PolymerMatrix Composites, The National Academies Press, Washington, D.C., 2005.
  • [71] M. Okamoto, Polymer Clay Nanocomposites, in: H.S. Nalva (ed.), Encyclopedia of Nanoscience and Nanotechnology, Vol. 8, 2004, 791-843.
  • [72] Y. Nakayama, E. Takeda, T. Shigeishi, H. Tomiyama, T. Kajiwara, Melt-Mixing by Novel Pitched-Tip Kneading Disks in a Co-Rotating Twin-Screw Extruder, Chemical Engineering Science 66/1 (2011) 103-110.
  • [73] M.H. Al-Saleh, U. Sundararaj, Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions, Polymers for Advanced Technologies 22 (2011) 246-253.
  • [74] B. Ma, C.H. Woo, Y. Miyamoto, J.M.J. Frchet, Solution Processing of a Small Molecule, Subnaphthalocyanine, for Efficient Organic Photovoltaic Cells, Chemistry of Materials 21/8 (2009) 1413-1417.
  • [75] C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr., S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chemical Physics Letters 364/3-4 (2002) 303-308.
  • [76] C. Zeng, L.J. Lee, Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared by in-Situ Polymerization, Macromolecules 34/12 (2001) 4098-4103.
  • [77] J.-H. Chen, C.-A. Dai, H.-J. Chen, P.-C. Chien, W.-Y. Chiu, Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites by heterocoagulation and blending with PET, Journal of Colloid and Interface Science 308/1 (2007) 81-92.
  • [78] L.A. Dobrzański, M. Bilewicz, J.C. Viana, Mechanical approach of PP/MMT polymer nanocomposite, Archives of Materials Science and Engineering 43/2 (2010) 94-100.
  • [79] X. Zong, K. Kim, D. Fang, S. Ran, B.S. Hsiao, B. Chu, Structure and process relationship of electrospun bioabsorb-able nanofiber membranes, Polymer 43 (2002) 4403-4412.
  • [80] W.K. Son, J.H. Youk, T.S. Lee, W.H. Park, Effect of pH on electrospinning of poly(vinyl alcohol), Materials Letters 59 (2005) 1571-1575.
  • [81] E.-R. Kenawy, J.M. Layman, J.R. Watkins, G.L. Bowlin, J.A. Matthews, D.G. Simpson, G.E. Wnek, Electrospinning of poly(ethylene-co-vinyl alcohol) fibers, Biomaterials 24 (2003) 907-913.
  • [82] J. Xie, Y.-L. Hsieh, Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme, Journal of Materials Science 38 (2003) 2125-2133.
  • [83] P. Wutticharoenmongkol, P. Supaphol, T. Srikhirin, T. Kerdcharoen, T. Osotchan, Electrospinning of Poly-styrene/poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) Blends, Journal of Polymer Science: Part B: Polymer Physics 43 (2005) 1881-1891.
  • [84] J.S. Choi, S.W. Lee, L. Jeonga, S.-H. Bae, B.C. Min, J.H. Youk, W.H. Park, Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate -co-3-hydroxyvalerate), International Journal of Biological Macromolecules 34 (2004) 249-256.
  • [85] G.L. Bowlin, A new spin on scaffolds, Materials Today 7/5 (2004) 64.
  • [86] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing, Biodegradable electrospun fibers for drug delivery, Journal of Controlled Release 92 (2003) 227-231.
  • [87] K. Ohkawa, H. Kim, K. Lee, Biodegradation of Electrospun Poly(e-caprolactone) Non-woven Fabrics by Pure-Cultured Soil Filamentous Fungi, Journal of Polymers and the Environment 12/4 (2004) 211-218.
  • [88] http://www.engr.utk.edu/mse/Textiles/Melt%20Blown%20Technology.htm
  • [89] Ibid. /Needle%20Punched%20Nonwovens.htm
  • [90] Ibid. /Spunlace.htm
  • [91] Ibid. /Spunbond%20Technology.htm
  • [92] Ibid./Thermal%20Bonding.htm
  • [93] A.L. Andrady, Science and technology of polymer nanofibers, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
  • [94] P.J. Brown, K. Stevens (ed.), Nanofibers and nanotechnology in textiles, CRC Press, Boca Raton - Boston - New York - Washington - Cambridge, 2007.
  • [95] J.-H. He, Y. Liu, L.-F. Mo, Y.-Q. Wan, L. Xu, Electrospun Nanofibres and Their Applications, zSmithers, Shawbury, Shrewsbury, Shropshire, 2008.
  • [96] Z.M. Hung Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their application in nano composites, Composite Science and Technology 63 (2003) 2223-2253.
  • [97] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nano fibers and textiles, Journal of Polymer Science 42/1 (2001) 261-272.
  • [98] X.-F. Wang, Z.-M. Huang, Melt-electrospinning of PMMA, Chinese Journal of Polymer Science 28/1 (2010) 45-53.
  • [99] J. Lin, B. Ding, J. Yu, Y. Hsieh, Direct Fabrication of Highly Nanoporous Polystyrene Fibers via Electrospinning, ACS Applied Materials & Interfaces 2 (2010) 521-528.
  • [100] Y. Srivastava, I. Loscertales, M. Marquez, T. Thorsen, Electrospinning of hollow and core/sheath nanofibers using a microfluidic manifold, Microfluid and Nanofluid 4/3 (2007) 245-250.
  • [101] Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, A. Greiner, Compound Core-shell Polymer Nanofibers by Co-Electrospinning, Advanced Materials 15/22 (2003) 1929-1932.
  • [102] A. Espíndola-González, A.L. Martínez-Hernández, F. Fernández-Escobar, V.M. Castaño, W. Brostow, T. Datashvili, C. Velasco-Santos, Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System, International Journal of Molecular Science 12 (2011) 1908-1920.
  • [103] K. Kurzydłowski, M. Lewandowska (eds.), Construction and functional engineering nanomaterials, PWN, Warsaw, 2010 (in Polish).
  • [104] Nanoscience and Nanotechnology - National Strategy for Poland, Governmental Document, 2006 (in Polish).
  • [105] S.R. Bakshi, D. Lahiri, A. Agarwal, Carbon nanotube reinforced metal matrix composites - a review, International Materials Reviews 55/1 (2010) 41-64.
  • [106] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon Nanotubes - The Route Towards Applications, Science 297 (2002) 787-792.
  • [107] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.
  • [108] O. Breuer, U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites, Polymer Composites 25/6 (2004) 630-645.
  • [109] A. McWilliams, Nanostructured Materials for the Biomedical, Pharmaceutical & Cosmetic Markets, BCC Research Report NAN017D, November, 2007.
  • [110] P.A. Gunatillake, R. Adhikari, Biodegradable Synthetic Polymers For Tissue Engineering, European Cells and Materials 5 (2003) 1-16.
  • [111] Z.-X. Cai, X.-M. Mo, K.-H. Zhang, L.-P. Fan, A.-L. Yin, C.-L. He, H.-S. Wang, Fabrication of Chitosan/Silk Fibroin Composite Nanofibers for Wound-dressing Applications, International Journal of Molecular Sciences 11 (2010) 3529-3539.
  • [112] R. Jayakumar, M. Prabaharan, P.T.S. Kumar, S.V. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnology Advances 29 (2011) 322-337.
  • [113] J.-P. Chen, G.-Y. Chang, J.-K. Chen, Electrospun collagen/ chitosan nanofibrous membrane as wound dressing, Colloids and Surfaces A: Physicochemical and Engineering Aspects 313-314 (2008) 183-188.
  • [114] C. Xu, F. Xu, B. Wang, T.J. Lu, Electrospinning of Poly(ethylene-co-vinyl alcohol) Nanofibres Encapsulated with Ag Nanoparticles for Skin Wound Healing, Journal of Nanomaterials (2011) 201834.
  • [115] A.G. Kanani, S.H. Bahrami, Review on Electrospun Nanofibers Scaffold and Biomedical Applications, Trends in Biomaterials and Artificial Organs 24/2 (2010) 930115.
  • [116] H.T. Zhuo, J.L. Hu, S.J. Chen, Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials, eXPRESS Polymer Letters 5/2 (2011) 182-187.
  • [117] D. Li, Y. Xia, Electrospinning of Nanofibers: Reinventign the Wheel, Advanced Materials 16/14 (2004) 1151-1170.
  • [118] E.S. Kim, S.H. Kim, C.H. Lee, Electrospinning of Polylactide Fibers Containing Silver Nanoparticles, Macro-molecular Research 18/3 (2010) 215-221.
  • [119] K.H. Hong, J.L. Park, I.H. Sul, J.H. Youk, T.J. Kang, Preparation of Antimicrobial Poly(vinyl alcohol) Nanofibers Containing Silver Nanoparticles, Journal of Polymer Science: Part B: Polymer Physics 44 (2006) 2468-2474.
  • [120] M. Ignatova, N. Manolova, I. Rashkov, Electrospinning of poly(vinyl pyrrolidone)-iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)-iodine complex - a prospective route to antimicrobial wound dressing materials, European Polymer Journal 43 (2007) 1609-1623.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d97d3fba-8a99-428d-9d84-b7697b722e19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.