Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 3 | 92--98
Tytuł artykułu

Determination of Design Limitations of Curved Profiles Manufactured by Robotics Non-Planar Additive Manufacturing

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The emerging trend of employing 4 or more axes multi-purpose and gantry industrial robots in large format additive manufacturing presents numerous opportunities as well as challenges. The capacity to handle substantial material quantities and rapidly produce prototypes, jigs, and final products of considerable dimensions necessitates the formulation of a well-suited production strategy. This involves setting production parameters to minimize material consumption and production time, considering the limitations of the utilized technologies, and ensuring the final product's quality. While slicers are commonly employed for establishing manufacturing strategies and production parameters, most additive manufacturing slicers are optimized for planar 3 axes 3D printing. This limitation hinders their ability to generate non-planar and freeform toolpaths. To overcome this constraint, this paper delves into the utilization of parametric modelling as a potent tool in the realm of non-planar additive manufacturing. It explores the possibilities offered by Rhinoceros Grasshopper software in designing toolpath strategies and fabricating non-planar layers. The paper addresses the associated challenges and limitations of parametric modelling, including computational complexity and the requirement for specialized software and expertise. It emphasizes the crucial need to strike a balance between design complexity and manufacturability to ensure the successful implementation of non-planar additive manufacturing processes.
Wydawca

Rocznik
Strony
92--98
Opis fizyczny
Bibliogr. 12 poz., fig.
Twórcy
  • Technical University of Košice, Department of Technology, Materials and Computer Supported production, Mäsiarska 74, 040 01 Košice, Slovakia, pavol.stefcak@tuke.sk
  • Technical University of Košice, Department of Technology, Materials and Computer Supported production, Mäsiarska 74, 040 01 Košice, Slovakia, ivan.gajdos@tuke.sk
autor
  • Technical University of Košice, Department of Technology, Materials and Computer Supported production, Mäsiarska 74, 040 01 Košice, Slovakia, jan.slota@tuke.sk
autor
  • Technical University of Košice, Prototyping and Innovation Center, Park Komenského 12A, 040 01 Košice,Slovakia, jozef.varga2@tuke.sk
  • Technical University of Košice, Department of Applied Mathematics and Informatics, Letná 9, 040 01 Košice, Slovakia, zuzana.kimakova@tuke.sk
  • Technical University of Košice, Prototyping and Innovation Center, Park Komenského 12A, 040 01 Košice,Slovakia, marek.vrabel@tuke.sk
Bibliografia
  • 1. Zhao D. and Guo W. Mixed-layer adaptive slicing for robotic Additive Manufacturing (AM) based on decomposing and regrouping. Journal of Intelligent Manufacturing 2020; 31: 985–1002. https://doi. org/10.1007/s10845-019-01490-z
  • 2. Urhal P., Weightman A., Diver C., Bartolo P. Robot assisted additive manufacturing: A review. Robotics and Computer Integrated Manufacturing 2019; 59: 335–345. https://doi.org/10.1016/j.rcim.2019.05.005
  • 3. Etienne J., Ray N., Panozzo D., Hornus S., Wang C.C.L., Martínez J., McMains S., Alexa M., Wyvill B., Lefebvre S. CurviSlicer: Slightly curved slicing for 3-axis printers. ACM Transactions on Graphics 2019; 38(4): 1–11. 10.1145/3306346.3323022. hal-02120033
  • 4. René K. Müller. 3D printing: Slicing with Non-Planar Geometries. Accesed online at Website: Resear- ch Paper | XYZ dims * [Actual to date: 26.02.2024]
  • 5. Hong F., Lampret B., Myant C., Hodges S., Boyle D. 5-axis multi-material 3D printing of curved electrical traces. Additive Manufacturing 2023; 70: 103546. https://doi.org/10.1016/j.addma.2023.103546
  • 6. Zhao G., Ma G., Feng J., Xiao W. Nonplanar slicing and path generation methods for robotic additive manufacturing. The International Journal of Advanced Manufacturing Technology 2018; 96: 3149– 3159. https://doi.org/10.1007/s00170-018-1772-9
  • 7. Haakonsen S.M., Dyvik, S.H., Luczkowski, M., Rønnquist, A.A Grasshopper Plugin for Finite Element Analysis with Solid Elements and Its Application on Gridshell Nodes. Appl. Sci. 2022; 12: 6037. https://doi.org/10.3390/app12126037
  • 8. Szulczynski P. and Kozłowski K. Parametric programming of industrial robots. Archives of Control Sciences Volume 25(LXI) 2015; 2: 215–225.
  • 9. Miciński P, Bryła J, Martowicz A. Multi-axis Fused Deposition Modeling using parallel manipulator integrated with a Cartesian 3D printer. Int. Jnl. Of Multiphysics 2021; 15(3): 251–263.
  • 10. Nozzle Diameter and Layer Height Explained. Nozzle Diameter and Layer Height Explained (wevolver.com); 2023. Accessed November 13.
  • 11. Gajdoš I., Štefčák P., Slota J., Sobaszek L. Influence of geometry and non-planar slicing on fused granular fabrication printing parameters. PRO-TECH- MA and KSIT 2023- International Scientific Con-ference, Slovakia 2023; 116–119.
  • 12. Script Attachment: Multi-axis slicing script for the parametric changeable model interet linik: Multi-axis slicing script for the parametric changeable model.gh
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d97a210b-06ea-4102-a443-7bfb0f08db65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.