Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 26, nr 2 | 367--381
Tytuł artykułu

Sewage sludge biochar effects on phosphorus mobility in soil and accumulation in plant

Warianty tytułu
PL
Wpływ biowęgla z osadów ściekowych na mobilność fosforu w glebie i akumulację w roślinie
Języki publikacji
EN
Abstrakty
EN
In the course of analysing sewage sludge biochar (BC) as a material containing phosphorus loads, we determined the following: effect of thermal conversion of three different sewage sludge biochars on the content and availability of P in biochars (BC-1, BC-2 BC-3), effect of their application on selected forms of P in soil and on the accumulation of this component in Poa pratensis L. biomass. Regardless of the type of BC, the contents of P-H2O and P-CaCl2 were lower than the contents determined in unconverted sewage sludge. A significant increase in the content of P-CaCl2 compared to the control was noted in the soil of treatments where 1 and 2 % additions of BC-2 and BC-3 were applied. Soil pH (r = 0.826; p ≤ 0.05) and the content of Ca-exchangeable (r = 0.712; p ≤ 0.05) had the strongest effect on the content of P-CaCl2 in soil; however, no significant relationship was found between the amount of P-introduced with BC, the contents of Al-ox., Fe-ox. and the content of P-CaCl2. Significant (p ≤ 0.05) increase in the phosphorus content in plant biomass was noted in all treatments compared to the control. Regardless of the type of biochar applied, the highest amount of P-uptake was determined in treatments where the greatest addition of BC (2 %) was introduced into the soil. A significant relationship between P-uptake and the amount of P-introduced with BC into the soil (r = 0.726; p ≤ 0.05) was demonstrated.
Wydawca

Rocznik
Strony
367--381
Opis fizyczny
Bibliogr. 48 poz., wykr., tab.
Twórcy
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31-120 Kraków, Poland, phone +48 12 662 43 46, fax +48 12 662 43 41
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31-120 Kraków, Poland, phone +48 12 662 43 46, fax +48 12 662 43 41
  • Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow, ul. Balicka 116B, 30-149 Kraków, Poland, Jakub.Sikora@ur.krakow.pl
  • Department of Environmentalistics and Natural Resources, Mendel University in Brno, Zemědělská 1/1665, 613 00 Brno, Czech Republic, tomas.losak@mendelu.cz
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology, ul. L. Waryńskiego 1, 00-645 Warszawa, Poland, p.grzybowski@ichip.pw.edu.pl
Bibliografia
  • [1] European Commission 2008. European Commission, environmental, economic and social impacts of the use of sewage sludge on land. Final report part I: Overview report. http://www.ec.europa.eu/environment/archives/waste/sludge/pdf/part_i_report.pdf.
  • [2] Błaszczyk K, Krzyśko-Łupicka T. Microbiological and physico-chemical composition of sewage sludge derived from the food industry. Chem Didact Ecol Metrol. 2013;18(1-2):89-95. DOI: 10.2478/cdem-2013-0021.
  • [3] Qian T, Jiang H. Migration of phosphorus in sewage sludge during different thermal treatment processes. ACS Sustainable Chem Eng. 2014;2(6):1411-1419. DOI: 10.1021/sc400476j.
  • [4] European Commission. Communication from the commission to European Parlament, the council, the European economic and social committee and the committee of the regions, on the 2017 list of Critical Raw Materials for the UE, COM (2017) 490 final. https://www.ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF.
  • [5] Dai L, Li H, Tan F, Zhu N, He M, Hu G. Biochar: a potential route for recycling of phosphorus in agricultural residues. Bioenergy. 2016;8:852-858. DOI: 10.1111/gcbb.12365.
  • [6] Sun D, Hale L, Kar G, Soolanayakanahally R, Adl S. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere. 2018;194:682-691. DOI: 10.1016/j.chemosphere.2017.12.035.
  • [7] European Biochar Certificate. Guidelines for a sustainable production of biochar. Arbaz, Switzerland: EBC, European Biochar Foundation. 2012. http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf.
  • [8] Arif M, Ilyas M, Riaz M, Ali K, Shah K, Ul Haq I, et al. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Res. 2017;214:25-37. DOI: 10.1016/j.fcr.2017.08.018.
  • [9] Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS. Impact of biochar amendment on fertility of a Southeastern Coastal plain soil. Soil Sci. 2009;174:105-112. DOI: 10.1097/SS.0b013e3181981d9a.
  • [10] Sandeep K, Ebhin MR, Lal R. Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng. 2013;55:67-72. DOI: 10.1016/j.ecoleng.2013.02.011.
  • [11] Prendergast-Mille, MT, Duvall M, Sohi SP. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci. 2014;65:173-185. DOI: 10.1111/ejss.12079.
  • [12] IBI. Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil. IBI-STD-2.1.https://www.biochar-international.org/wp-content/uploads/2018/04/IBI_Biochar_Standards_V2.1_Final.pdf.
  • [13] Jindo K, Suto K, Matsumoto K, Garcia C, Sonoki T, Sanchez-Monedero MA. Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure. Bioresour Technol. 2012;110:396-404. DOI: 10.1016/j.biortech.2012.01.120.
  • [14] Oleszczuk N, Castro JT, da Silva MM, Korn Md, Welz B, Vale MG. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Talanta. 2007;73(5):862-869. DOI: 10.1016/j.talanta.2007.05.005.
  • [15] Barret EP, Joyner LG, Halenda PH. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Amer Chem Soc. 1951;73(1):373-380. DOI: 10.1021/ja01145a126.
  • [16] Rayment GE, Higginson FR. Australian Laboratory Handbook of Soil and Water Chemical Methods. Melbourne: Inkata Press; 1992. ISBN: 0909605688.
  • [17] Blakemore LC, Searle PL, Daly BK. Methods for chemical analysis of soils. Lower Hutt, New Zealand: Soil Bureau, Pub. Department of Scientific and Industrial Research.; 1987; 102. DOI: 10.7931/DL1-SBSR-10A.
  • [18] Houba VJG, Temminghoff EJM, Gaikhorst GA, Van Vark W. Soil analysis procedures using 0.01M calcium chloride as extractation reagent. Comm Soil Sci Plant Anal. 2000;31(9-10):1299-1396. DOI: 10.1080/00103620009370514.
  • [19] Manolikaki II, Mangolis A, Diamadopulos E. The impact of biochars prepared from agricultural residues on phosporus relese and availability in two fertile soils. J Environ Manage. 2016;181:536-543. DOI: 10.1016/j.jenvman.2016.07.012.
  • [20] Windeatt JH, Ross AB, Williams PT, Forster PM, Nahil MA, Singh S. Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. J Environ Manage. 2014;146:189-197. DOI: 10.1016/j.jenvman.2014.08.003.
  • [21] Singh R, Babu JN, Kumar R, Srivastava P, Singh P, Raghubanshi AS. Multifaceted application of crop residue biochar as a tool for sustainable agriculture: an ecological perspective. Ecol Eng. 2015;77:324-347. DOI: 10.1016/j.ecoleng.2015.01.011.
  • [22] Gai X, Wang H, Liu J, Zhai L, Liu S, Ren T, Liu H. Effect of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS One. 2014;9(12):1-19. DOI: 10.1371/journal.pone.0113888.
  • [23] Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences. 2014;11(23):6613-6621. DOI: 10.5194/bg-11-6613-2014.
  • [24] Kloss S, Zehetner F, Wimmer B, Buecker J, Rempt F, Soja G. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. J Plant Nutr Soil Sci. 2014;177:3-15. DOI: 10.1002/jpln.201200282.
  • [25] Méndez A, Gomez A, Paz-Ferreiro J, Gasco G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere. 2012;89:1354-1359. DOI: 10.1016/j.chemosphere.2012.05.092.
  • [26] Tóth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int. 2016;88:299-309. DOI: 10.1016/j.envint.2015.12.017.
  • [27] Atienza-Martinez M, Gea G, Arauzo J, Kersten SRA, Kootstra MJ. Phosphorus recovery from sewage sludge char ash. Biomass Bioenergy. 2014;65:42-50. DOI: 10.1016/j.biombioe.2014.03.058.
  • [28] Mackay JE, Cavagnaro TR, Jakobsen I, Macdonald LM, Gronlund M, Thomsen TP, et al. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat. Plant Soil. 2017;418(1-2):307-317. DOI: 10.1007/s11104-017-3298-6.
  • [29] Dai L, Tan F, Wu B, He M, Wang W, Tang, W, et al. Immobilization of phosphorus in cow manure during hydrothermal carbonization. J Environ Manage. 2015;157:49-53. DOI: 10.1016/j.jenvman.2015.04.009.
  • [30] Nigussie A, Kissi E, Misganaw M, Ambaw G. Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. American-Eurasian J Agric Environ Sci. 2012;12(3):369-376. https://www.pdfs.semanticscholar.org/ffb5/e16d49f0b49debdd7fa3f874c4a25d28ad44.pdf.
  • [31] Solaiman ZN, Anawar HM. Application of biochors for soil constraints: challenge and solutions. Pedosphere. 2015;25(5):631-638. DOI: 10.1016/S1002-0160(15)30044-8.
  • [32] Hernandez-Sariano MC, Kerré B, Kopittke PM, Horemans B, Smolders E. Biochar affect carbon composition and stability in soil: a combined spectroscopy-microscopy study. Sci Rep. 2016;6:1-13. DOI: 10.1038/srep25127.
  • [33] Jiang X, Haddix ML, Cotrufo FM. Interactions between biochar and soil organic carbon decomposition: Effects of nitrogen and low molecular weight carbon compound addition. Soil Biol Biochem. 2016;100:92-101. DOI: 10.1016/j.soilbio.2016.05.020.
  • [34] Yuan JH, Xu RK, Qian W, Wang RH. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars. J Soils Sedim. 2011;11:741-750. DOI: 10.1007/s11368-011-0365-0.
  • [35] Lehmann J, Joseph S, editors. Biochar for Environmental Management. Science, Technology and Implementation. 2nd Ed. London and New York: Taylor Francis Group; 2015; 944. ISBN: 9780415704151.
  • [36] Murphy PNC, Stevens RJ. Lime and gypsum as Skurce measures to decrease phosphorus loss from soils to water. Water Air Soil Pollut. 2010;212:101-111. DOI: 10.1007/s11270-010-0325-0.
  • [37] Mukherjee A, Zimmerman AR, Harris W. Surface chemistry variations among a series of laboratory produced biochars. Geoderma. 2011;163:247-255. DOI: 10.1016/j.geoderma.2011.04.021.
  • [38] Hong C, Lu S. Does biochar affect the availability and chemical fraction of phosphate in soil? Environ Sci Pollut Res Int. 2018;25(9):8725-8734. DOI: 10.1007/s11356-018-1219-8.
  • [39] Martínez C, José M, España A, César J, Díaz V. Effect of Eucalyptus globullus biochar addition on the availability of phosphorus in acidic soil. Agron Colomb. 2017;35(1):75-81. DOI: 10.15446/agron.colomb.v35n1.58671
  • [40] Gao S, DeLuca TH, Cleveland CC. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci Total Environ. 2019;654(1):463-472. DOI: 10.1016/j.scitotenv.2018.11.124.
  • [41] Tian X, Li C, Zhang M, Wan Y, Xie Z, Chen B, et al. Biochar derived from corn straw affected availability and distribution of soil nutrients and cotton yield. PLoS ONE. 2018;13(1):1-19. DOI: 10.1371/journal.pone.0189924.
  • [42] Borchard N, Siemens J, Ladd B, Möller A, Amelung W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 2014;144:184-194. DOI: 10.1016/j.still.2014.07.016.
  • [43] Jeffery S, Verheijen FGA, Van der Velde M, Bastos AC. A quantitative review of the effects of biochar application to soils on crop productivity Rusing meta-analysis. Agric Ecosyst Environ. 2011;144:175-187. DOI: 10.1016/j.agee.2011.08.015.
  • [44] Vaccari FP, Maienza A, Miglietta F, Baronti S, Di Lonardo S, Giagnoni L, et al. Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agric Ecosyst Environ. 2015;207:163-170. DOI: 10.1016/j.agee.2015.04.015.
  • [45] Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, et al. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J. 2010;102:623-633. DOI: 10.2134/agronj2009.0083.
  • [46] Faria WM, Figueiredo CC, Coser TR, Vale AT, Schneider BG. Is sewage sludge biochar capable of replacing inorganic fertilizers for corn production? Evidence from a two-year field experiment. Arc Agron Soil Sci. 2017;505-519. DOI: 10.1080/03650340.2017.1360488.
  • [47] Biederman LA, Harpole SW. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Change Biol Bioener. 2014;5:202-214. DOI: 10.1111/gcbb.12037.
  • [48] Shen Q, Hedley M, Camos Arbestain M, Kirschbaum MUF. Can biochar increase the bioavailability of phosphorus. J Soil Sci Plant Nutrition. 2016;16(2):268-286. DOI: 10.4067/S0718-95162016005000022.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d96c9983-aa09-44d7-a4f6-5d96588a28ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.