Warianty tytułu
Języki publikacji
Abstrakty
Wave energy is still insufficiently explored and exploited as a future energy source. Climate change is an additional force that affects energy potential changes. Therefore, this study aims to evaluate the wave energy under climate change and to project it for the near (2025–2044) and far (2081–2100) future by applying the wave energy flux (WEF) approach and statistical relations between wind speeds and wave heights. The study was concentrated on the Baltic Sea nearshore at the Lithuanian territorial water. The analysis of existing relations between wind speeds and wave heights was found based on historical observations of the reference period (1995–2014), and the projections of WEF were created using the downscaled output of best-fit global climate models (GCMs) according to four scenarios of Shared Socioeconomic Pathways (SSP). The results indicated strong relations between wind speed and wave height, especially for the west-origin winds. Depending on the selected scenarios, the projected WEF may increase up to 10% (SSP5-8.5) and 11% (SSP1-2.6) in the near and far future respectively. The absence of large differences between the periods may be caused by the rough resolution of grid cells of GCMs. The comparison with the results based on regional climate models output could be a future perspective in order to reach a better representation of regional forces and to introduce more clarity to the obtained results. The results of this study may be advantageous for the primary planning of renewable energy sources (RES) development, especially in the face of climate change.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
534--547
Opis fizyczny
Bibliogr. 54 poz., map., rys., tab., wykr.
Twórcy
autor
- Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania, darius.jakimavicius@lei.lt
autor
- Laboratory of Hydrology, Lithuanian Energy Institute, Kaunas, Lithuania, vytautas.akstinas@lei.lt
Bibliografia
- 1. Ahn, J., Na, Y., Park, S.W., 2019. Development of Two Dimensional Inundation Modelling Process using MIKE21 Model. KSCE J. Civ. Eng. 23, 3968-3977. https://doi.org/10.1007/s12205-019-1586-9
- 2. Alari, V., Staneva, J., Breivik, Ø., Bidlot, J.-R., Mogensen, K., Janssen, P., 2016. Surface wave effects on water tempera ture in the Baltic Sea: simulations with the coupled NEMO-WAM model. Ocean Dynam. 66, 917-930. https://doi.org/10.1007/s10236-016-0963-x
- 3. Anton, I.A., Rusu, L., Anton, C., 2019. Nearshore Wave Dynamics at Mangalia Beach Simulated by Spectral Models. J. Mar. Sci. Eng. 7, 206. https://doi.org/10.3390/jmse7070206
- 4. Aquaret, 2008. Case Study — Okeanos Pelamis Wave Farm. Available online: https://www.aquaret.com/images/stories/ aquaret/pdf/cswavepelamis.pdf (accessed on 9 August 2022).
- 5. Atvira Klaipeda.lt, 2021. Klaipėda port’s cargo turnover is without significant fluctuations. Available online: https://www. atviraklaipeda.lt/2021/06/18/klaipedos-uosto-kroviniuapyvarta-be-dideliu-svyravimu/ (accessed on 11 August 2022) (in Lithuanian).
- 6. Austin, P.C., 2017. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications. Int. Stat. Rev 85, 185-203. https://doi.org/10.1111/insr.12214
- 7. Bonaduce, A., Staneva, J., Behrens, A., Bidlot, J.-R., Wilcke, R.A.I., 2019. Wave Climate Change in the North Sea and Baltic Sea. J. Mar. Sci. Eng. 7, 166. https://doi.org/10.3390/ jmse7060166
- 8. Bosshard, T., Kotlarski, S., Ewen, T., Schär, C., 2011. Spectral representation of the annual cycle in the climate change signal. Hydrol. Earth Syst. Sci. 15 (9), 2777-2788. https://doi.org/10. 5194/hess-15-2777-2011
- 9. Björkqvist, J.-V., Rikka, S., Alari, V., Männik, A., Tuomi, L., Pettersson, H., 2020. Wave height return periods from combined measurement—model data: a Baltic Sea case study. Nat. Hazard. Earth Sys. 20, 3593-3609. https://doi.org/10.5194/nhess-20-3593-2020
- 10. Camus, P., Losada, I.J., Izaguirre, C., Espejo, A., Menéndez, M., Pérez, J., 2017. Statistical wave climate projections for coastal impact assessments. Earth’s Future 5, 918-933. https://doi.org/10.1002/2017EF000609
- 11. Carvalho, D., Rocha, A., Costoya, X., deCastro, M., Gómez-Gesteira, M., 2021. Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renew. Sust. Energ. Rev. 151, 111594. https://doi.org/ 10.1016/j.rser.2021.111594
- 12. Cuttler, M.V.W., Hansen, J.E., Lowe, R.J., 2020. Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia. Renew. Energy 146, 2337-2350. https://doi.org/10.1016/j.renene.2019.08.058
- 13. Divinsky, B.V., Kosyan, R.D., 2017. Spatiotemporal variability of the Black Sea wave climate in the last 37 years. Cont. Shelf Res. 136, 1-19. https://doi.org/10.1016/j.csr.2017.01.008
- 14. Dreier, N., Nehlsen, E., Fröhle, P., Rechid, D., Bouwer, L., Pfeifer, S., 2021. Future Changes in Wave Conditions at the German Baltic Sea Coast Based on a Hybrid Approach Using an Ensemble of Regional Climate Change Projections. Water 13, 167. https://doi.org/10.3390/w13020167
- 15. Elkut, A.E., Taha, M.T., Abu Zed, A.B.E., Eid, F.M., Abdallah, A.M., 2021. Wind-wave hindcast using modified ECMWF ERA-Interim wind field in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 252, 107267. https://doi.org/10.1016/j.ecss.2021. 107267
- 16. European Centre for Medium-Range Weather Forecasts (ECMWF), 2022. ERA5: How to calculate wind speed and wind direction from u and v components of the wind? Available online: https://confluence.ecmwf.int/pages/viewpage.action? pageId=133262398 (accessed on 25 August 2022).
- 17. European Parliament, 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. European Council, Brussels, Belgium. 5 June 2009. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri= CELEX%3A32009L0028 (accessed on 12 August 2022).
- 18. Eurostat, 2020. Renewable energy statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Share_of_renewable_energy_more_than_doubled_between_2004_and_2020 (accessed on 10 August February 2022).
- 19. Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9 (5), 1937-1958. https://doi. org/10.5194/gmd-9-1937-2016
- 20. Falnes, J., 2002. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge University Press, UK, 286 pp. https://doi.org/10.1017/CBO9780511754630
- 21. Groll, N., Grabemann, I., Hünicke, B., Meese, M., 2017. Baltic Sea wave conditions under climatechange scenarios. Boreal Env. Res. 22, 1-12.
- 22. Guo, H., Xu, M., Hu, Q., 2011. Changes in near-surface wind speed in China: 1969—2005. Int. J. Climatol. 31, 349-358. https://doi. org/10.1002/joc.2091
- 23. Henfridsson, U., Neimane, V., Strand, K., Kapper, R., Bernhoff, H., Danielsson, O., Leijon, M., Sundberg, J., Thorburn, K., Ericsson, E., Bergman, K., 2007. Wave energy potential in the Baltic Sea and the Danish part of the North Sea, with reflections on the Skagerrak. Renew. Energ. 32, 2069-2084. https://doi.org/ 10.1016/j.renene.2006.10.006
- 24. Islek, F., Yuksel, Y., 2021. Inter-comparison of long-term wave power potential in the Black Sea based on the SWAN wave model forced with two different wind fields. Dynam. Atmos. Oceans 93, 101192. https://doi.org/10.1016/j.dynatmoce.2020.101192
- 25. Jakimavičius, D., Adžgauskas, G., Šarauskienė, D., Kriaučiūnienė, J., 2020. Climate change impact on hydropower resources in gauged and ungauged Lithuanian river catchments. Water 12, 3265. https://doi.org/10.3390/w12113265
- 26. Jakimavičius, D., Kriaučiūnienė, J., Šarauskiene, ˙ D., 2018a. Assessment of wave climate and energy resources in the Baltic Sea nearshore (Lithuanian territorial water). Oceanologia 60 (2), 207-218. https://doi.org/10.1016/j.oceano.2017.10.004
- 27. Jakimavičius, D., Kriaučiūnienė, J., Šarauskienė, ˙ D., 2018b. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 60 (3), 378-389. https://doi.org/10.1016/j. oceano.2018.02.003
- 28. Jankevičienė, ˙ J., Kanapickas, A., 2023. Projected Wind Energy Maximum Potential in Lithuania. Appl. Sci. 13, 364. https://doi.org/ 10.3390/app13010364
- 29. Jung, C., Schindler, D., 2022. A review of recent studies on wind resource projections under climate change. Renew. Sust. Energ. Rev. 165, 112596. https://doi.org/10.1016/j.rser.2022.112596
- 30. Kanarik, H., Tuomi, L., Björkqvist, J.-V., Kärnä, T., 2021. Improving Baltic Sea wave forecasts using modelled surface currents. Ocean Dynam. 71, 635-653. https://doi.org/10.1007/s10236-021-01455-y
- 31. Kasiulis, E., Punys, P., Kofoed, J.P., 2015. Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea. Renew. Sust. Energ. Rev. 41, 134-142. https://doi.org/10.1016/j.rser.2014.08.044
- 32. Kovaleva, O., Eelsalu, M., Soomere, T., 2017. Hot-spots of large wave energy resources in relatively sheltered sections of the Baltic Sea coast. Renew. Sust. Energ. Rev. 74, 424-437. https://doi.org/10.1016/j.rser.2017.02.033
- 33. Kriaučiunienė, J., Virbickas, T., Šarauskienė, D., Jakimavičius, D, Kažys, J., Bukantis, A., Kesminas, V., Povilaitis, A., Dainys, J., Akstinas, V., Jurgėlenaitė, A., Meilutytė-Lukauskienė, D., Tomkevičiene, A., 2019. Fish assemblages under climate change in Lithuanian rivers. Sci. Total Environ. 661, 563-574. https:// doi.org/10.1016/j.scitotenv.2019.01.142
- 34. Liu, H., Tian, H.-Q., Chen, C., Li, Y., 2010. A hybrid statistical method to predict wind speed and wind power. Renew. Energ. 35, 1857-1861. https://doi.org/10.1016/j.renene.2009.12.011
- 35. Lobeto, H., Menendez, M., Losada, I.J., 2021. Future behavior of wind wave extremes due to climate change. Sci. Rep. 11, 7869. https://doi.org/10.1038/s41598-021-86524-4
- 36. Martinez, A., Iglesias, G., 2022. Climate change impacts on wind energy resources in North America based on the CMIP6 projections. Sci. Total Environ. 806, 150580. https://doi.org/10.1016/j.scitotenv.2021.150580
- 37. Mørk, G., Barstow, S., Pontes, M.T., Kabuth, A., 2010. Assessing the global wave energy potential. 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering. Shanghai, China, 6-11. https://doi.org/10.1115/OMAE2010-20473
- 38. Nilsson, E., Rutgersson, A., Dingwell, A., Björkqvist, J.-V., Pettersson, H., Axell, L., Nyberg, J., Strömstedt, E., 2019. Characterization of Wave Energy Potential for the Baltic Sea with Focus on the Swedish Exclusive Economic Zone. Energies 12, 793 pp. https://doi.org/10.3390/en12050793
- 39. Pryor, S.C., Schoof, J.T., Barthelmie, R.J., 2006. Winds of change?: Projections of near-surface winds under climate change scenarios. Geophys. Res. Lett. 33, L11702. https://doi.org/10.1029/2006gl026000
- 40. Reikard, G., Robertson, B., Buckham, B., Bidlot, J.R., Hiles, C., 2015. Simulating and forecasting ocean wave energy in western Canada. Ocean Eng. 103, 223-236. https://doi.org/10.1016/j.oceaneng.2015.04.081
- 41. Ross, D., 1995. Power from the waves. Oxford University Press, USA, 224 pp.
- 42. Sapiega, P., Zalewska, T., Struzik, P., 2023. Application of SWAN model for wave forecasting in the southern Baltic Sea supplemented with measurement and satellite data. Environ. Modell. Softw. 105624. https://doi.org/10.1016/j.envsoft.2023.105624
- 43. Soomere, T., Eelsalu, M., 2014. On the wave energy potential along the eastern Baltic Sea coast. Renew. Energ. 71, 221-233. https://doi.org/10.1016/j.renene.2014.05.025
- 44. Soomere, T., 2023. Numerical simulations of wave climate in the Baltic Sea: a review. Oceanologia 65 (1), 117-140. https://doi. org/10.1016/j.oceano.2022.01.004
- 45. Soran, M.B., Amarouche, K., Akpınar, A., 2022. Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Eng. 257, 111627. https://doi.org/10.1016/j.oceaneng. 2022.111627
- 46. Statistics Lithuania, 2022. Total gross electricity production from renewables. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize?hash=e69dc4ad-15d0-4d55-a261-96b455a7a20b#/ (accessed on 11 August 2022).
- 47. Teutschbein, C., Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 456—457, 12-29. https://doi.org/10.1016/j.jhydrol.2012.05.052
- 48. Toffoli, A., Bitner-Gregersen, E.M., 2017. Types of Ocean Surface Waves, Wave Classification. In: Encyclopedia of Maritime and Offshore Engineering. John Wiley & Sons, Ltd, Chichester, UK, 1-8. https://doi.org/10.1002/9781118476406.emoe077
- 49. Universal Lithuanian Encyclopedia, 2022. The Baltic Sea. Available online: https://www.vle.lt/straipsnis/baltijos-jura (accessed on 12 August 2022) (in Lithuanian).
- 50. Vu Dinh, Q., Doan, Q.-V., Ngo-Duc, T., Nguyen Dinh, V., Dinh Duc, N., 2022. Offshore wind resource in the context of global climate change over a tropical area. Appl. Energ. 308, 118369. https://doi.org/10.1016/j.apenergy.2021.118369
- 51. Weibull, W., 1939. A statistical study of the strength of material. Ing. Vetenskaps Akad. Handl. (Stockholm), 151, 45 pp.
- 52. Xie, Y., 2011. Values and limitations of statistical models. Res. Soc. Strat. Mobil. 29, 343-349. https://doi.org/10.1016/j. rssm.2011.04.001
- 53. Zaitseva-Pärnaste, I., Soomere, T., 2013. Interannual variations of ice cover and wave energy flux in the northeastern Baltic Sea. Ann. Glaciol. 54, 175-182. https://doi.org/10.3189/ 2013aog62a228
- 54. Zheng, C., Xu, J., Zhan, C., Wang, Q., 2020. 21st Century Maritime Silk Road: Wave Energy Resource Evaluation. Springer, Singapore, 170 pp. https://doi.org/10.1007/978-981-15-0917-9
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d94b64f0-a09e-4663-b73c-075e1823b779