Czasopismo
2017
|
Vol. 23, No. 4
|
299--303
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We point out that two of Milne’s fourth-order integrators are well-suited to bit-reversible simulations. The fourth-order method improves on the accuracy of Levesque and Verlet’s algorithm and simplifies the definition of the velocity v and energy e = (q2 + v2)=2. (We use this one-dimensional oscillator problem as an illustration throughout this paper). Milne’s integrator is particularly useful for the analysis of Lyapunov (exponential) instability in dynamical systems, including manybody molecular dynamics. We include the details necessary to the implementation of Milne’s Algorithms.
Rocznik
Tom
Strony
299--303
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Ruby Valley Research Institute Highway Contract 60, Box 601, Ruby Valley, Nevada 89833, USA, hooverwilliam@yahoo.com
autor
- Ruby Valley Research Institute Highway Contract 60, Box 601, Ruby Valley, Nevada 89833, USA
Bibliografia
- [1] W. E. Milne, Numerical Calculus – Approximations, Interpolation, Finite Differences, Numerical Integration, and Curve Fitting (Princeton University Press, 1949 and 2015).
- [2] D. Levesque and L. Verlet, Molecular Dynamics and Time Reversibility, Journal of Statistical Physics 72, 519-537 (1993).
- [3] L. Verlet, ‘Computer Experiments’ on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review 159, 98-103 (1967).
- [4] H. A. Posch and W. G. Hoover, Large-System Phase-Space Dimensionality Loss in Stationary Heat Flows, Physica D 187, 281-293 (2004).
- [5] O. Kum and Wm. G. Hoover, Time-Reversible Continuum Mechanics, Journal of Statistical Physics 76, 1075-1081 (1994).
- [6] B. L. Holian, Wm. G. Hoover, and H. A. Posch, Resolution of Loschmidt’s Paradox: The Origin of Irreversible Behavior in Reversible Atomistic Dynamics, Physical Review Letters 59, 10-13 (1987).
- [7] C. Grebogi, E. Ott, and J. A. Yorke, Roundoff-Induced Periodicity and the Correlation Dimension of Chaotic Attractors, Physical Review A 38, 3688-3692 (1988).
- [8] C. Dellago and Wm. G. Hoover, Finite-Precision Stationary States At and Away from Equilibrium, Physical Review E 62, 6275-6281 (2000).
- [9] M. Romero-Bastida, D. Pazó, J. M. Lopéz, and M. A. Rodriguez, Structure of Characteristic Lyapunov Vectors in Anharmonic Hamiltonian Lattices, Physical Review E 82, 036205 (2010).
- [10] Wm. G. Hoover and Carol G. Hoover, Time-Symmetry Breaking in Hamiltonian Mechanics, Computational Methods in Science and Technology 19, 77-87 (2013).
- [11] Wm. G. Hoover and C. G. Hoover, The Kharagpur Lectures (World Scientific, Singapore, 2018, in preparation).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d925c402-e13c-4d33-974e-9759b07a75ca