Warianty tytułu
Projekt układu sterowania zawieszeniem bezłożyskowego silnika indukcyjnego z wykorzystaniem samostrojącego regulatora rozmytego PID
Języki publikacji
Abstrakty
A bearingless induction motor (BIM) has many advantages, resulting in fast growing interest in this motor. BIM combines the functions of both torque generation and magnetic suspension, the essential requirements for controlling the (BIM) is to generate an electromagnetic force that makes the rotor rotates within a certain limit at the centre of the stator, and this must be maintained even when the motor is exposed to internal disturbances like variation of speed or external disturbance like applying forces on the rotor shaft. This paper proposed a design and simulation of suspension control system for a bearingless induction motor by using on-line self tuning fuzzy-PID methods. The proposed controller provides better performance than the traditional PID, the results show that the fuzzy-PID controller reduces the rotor deviation by 36% under effect of external disturbance force and by 66.7% under effect of speed variation.
Bezłożyskowy silnik indukcyjny (BIM) ma wiele zalet, co skutkuje szybko rosnącym zainteresowaniem tym silnikiem. BIM łączy w sobie funkcje generowania momentu obrotowego i zawieszenia magnetycznego, podstawowe wymagania dotyczące sterowania (BIM) to generowanie siły elektromagnetycznej, która powoduje, że wirnik obraca się w pewnym zakresie w środku stojana i musi to być utrzymywane nawet wtedy, gdy silnik jest narażony na zakłócenia wewnętrzne, takie jak zmiany prędkości lub zakłócenia zewnętrzne, takie jak przykładanie sił do wału wirnika. W artykule zaproponowano zaprojektowanie i symulację układu sterowania zawieszeniem bezłożyskowego silnika indukcyjnego z wykorzystaniem metod samostrojenia rozmytego PID on-line. Zaproponowany regulator zapewnia lepsze osiągi niż tradycyjny PID, wyniki pokazują, że regulator rozmyty PID zmniejsza odchylenie wirnika o 36% pod wpływem zewnętrznej siły zakłócającej io 66,7% pod wpływem zmian prędkości.
Czasopismo
Rocznik
Tom
Strony
148--154
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Science in Electrical Power Engineering at the University of Technology, Iraq, eee.20.70@grad.uotechnology.edu.iq
- Department of Electrical Engineering, University of Technology, Iraq, mohammedmoanes.e.ali@uotechnology.edu.iq
Bibliografia
- [1] X. Ye, Z. Yang, J. Zhu, and Y. Guo, “Modeling and operation of a bearingless fixed-pole rotor induction motor,” IEEE Trans.Appl. Supercond., vol. 29, no. 2, Mar. 2019, doi: 10.1109/TASC.2018.2890382.
- [2] A. A. Yousif, A. M. Mohammed, and M. M. E. Ali, “Radial force cancellation of bearingless brushless direct current motor using integrated winding configuration,” Indones. J. Electr. Eng. Comput. Sci., vol. 25, no. 1, pp. 79–88, 2022.
- [3] N. Mamat, K. A. Karim, Z. Ibrahim, T. Sutikno, S. A. A.Tarusan, and A. Jidin, “Bearingless Permanent Magnet Synchronous Motor using Independent Control,” Int. J. Power Electron. Drive Syst., vol. 6, no. 2, pp. 233–241, 2015.
- [4] X. Ye and Z. Yang, “Development of Bearingless Induction Motors and Key Technologies,” IEEE Access, vol. 7, pp. 121055–121066, 2019, doi: 10.1109/ACCESS.2019.2937118.
- [5] X. Ye, Z. Yang, J. Zhu, and Y. Guo, “Design and analysis of a bearingless fixed-pole rotor induction motor,” in 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 2018, pp. 1–2.
- [6] X. Cao, J. Zhou, C. Liu, and Z. Deng, “Advanced control method for a single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement,” IEEE Trans. energy Convers., vol. 32, no. 4, pp. 1533–1543, 2017.
- [7] Z. Yang, D. Zhang, X. Sun, and X. Ye, “Adaptive exponentialsliding mode control for a bearingless induction motor based ona disturbance observer,” IEEE Access, vol. 6, pp. 35425–35434, 2018.
- [8] H. Zhu, Z. Yang, X. Sun, D. Wang, and X. Chen, “Rotor vibration control of a bearingless induction motor based on unbalanced force feed-forward compensation and current compensation,” IEEE Access, vol. 8, pp. 12988–12998, 2020.
- [9] W.-S. Bu and Y.-Q. Huang, “Active disturbance rejection control of bearingless induction motor,” in international Conference on Electrical Engineering and Automation Control (ICEEAC), 2017, vol. 123, pp. 386–391.
- [10] E. A. D. F. Nunes et al., “Proposal of a fuzzy controller for radial position in a bearingless induction motor,” IEEE Access, vol. 7, pp. 114808–114816, 2019.
- [11] W. Bu, X. Zhang, and F. He, “Sliding mode variable structure control strategy of bearingless induction motor based on inverse system decoupling,” IEEJ Trans. Electr. Electron. Eng., vol. 13, no. 7, pp. 1052–1059, 2018.
- [12] Z. Yang, Q. Ding, X. Sun, H. Zhu, and C. Lu, “Fractional-order sliding mode control for a bearingless induction motor based onimproved load torque observer,” J. Franklin Inst., vol. 358, no. 7, pp. 3701–3725, 2021.
- [13] Z. Yang, K. Wang, X. Sun, and X. Ye, “Load disturbance rejection control of a bearingless induction motor based on fractional-order integral sliding mode,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., vol. 232, no. 10, pp. 1356–1364, 2018.
- [14] X. X. Liu, M. Y. Chen, X. Y. Shao, and Z. Q. Wang, “Study on Control System of Bearingless Induction Motor Based on Modified Internal Model Control,” in Advanced Materials Research, 2011, vol. 317, pp. 567–572.
- [15] Z. Yang, D. Zhang, X. Sun, W. Sun, and L. Chen, “Nonsingular fast terminal sliding mode control for a bearingless induction motor,” IEEE Access, vol. 5, pp. 16656–16664, 2017.
- [16] A. Chiba, T. Fukao, O. Ichikawa, M. Oshima, M. Takemoto, and D. G. Dorrell, Magnetic bearings and bearingless drives. Elsevier, 2005.
- [17] S. Nomura, A. Chiba, F. Nakamura, K. Ikeda, T. Fukao, and M. A. Rahman, “A radial position control of induction type bearingless motor considering phase delay caused by the rotor squirrel cage,” in Conference Record of the Power Conversion Conference-Yokohama 1993, 1993, pp. 438–443.
- [18] A. Chiba, D. T. Power, and M. A. Rahman, “Analysis of no-load characteristics of a bearingless induction motor,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 77–83, 1995.
- [19] A. Chiba, R. Furuichi, Y. Aikawa, K. Shimada, Y. Takamoto,and T. Fukao, “Stable operation of induction-type bearingless motors under loaded conditions,” IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 919–924, 1997.
- [20] Q. Li and X. Liu, “Decoupling Control of Bearingless Induction Motor Based on Rotor Flux Orientation with Inverse System Theory,” in 2010 International Conference on Measuring Technology and Mechatronics Automation, 2010, vol. 1, pp. 894–897.
- [21] Z. Yang, J. Ji, X. Sun, H. Zhu, and Q. Zhao, “Active disturbance rejection control for bearingless induction motor based on hyperbolic tangent tracking differentiator,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 8, no. 3, pp. 2623–2633, 2019.
- [22] Y. Chen, W. Bu, and Y. Qiao, “Research on the speed sliding mode observation method of a bearingless induction motor,” Energies, vol. 14, no. 4, p. 864, 2021.
- [23] W. Bu, Y. Chen, and C. Zu, “Stator flux orientation inverse system decoupling control strategy of bearingless induction motor considering stator current dynamics,” IEEJ Trans. Electr. Electron. Eng., vol. 14, no. 4, pp. 640–647, 2019.
- [24] C. X. Duan, Y. Han, and Y. H. Zhao, “Design of suspension control system for bearingless motor,” in Advanced Materials Research, 2012, vol. 538, pp. 3277–3280.
- [25] I. Ferdiansyah, M. R. Rusli, B. Praharsena, H. Toar, and E. Purwanto, “Speed control of three phase induction motor using indirect field oriented control based on real-time control system,” in 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), 2018, pp. 438–442.
- [26] R. Arulmozhiyal and R. Kandiban, “Design of fuzzy PID controller for brushless DC motor,” in 2012 International Conference on Computer Communication and Informatics, 2012, pp. 1–7.
- [27] R. K. Mudi and N. R. Pal, “A self-tuning fuzzy PI controller,” Fuzzy sets Syst., vol. 115, no. 2, pp. 327–338, 2000.
- [28] S. Vasu, “Fuzzy PID based adaptive control on industrial robot system,” Mater. Today Proc., vol. 5, no. 5, pp. 13055–13060, 2018.
- [29] A. A. El-Samahy and M. A. Shamseldin, “Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control,” Ain Shams Eng. J., vol. 9, no. 3, pp. 341–352, 2018.
- [30] Y. Ma, Y. Liu, and C. Wang, “Design of parameters self-tuning fuzzy PID control for DC motor,” in 2010 The 2nd International Conference on Industrial Mechatronics and Automation, 2010, vol. 2, pp. 345–348.
- [31] H. Maghfiroh, A. Ramelan, and F. Adriyanto, “Fuzzy-PID in BLDC Motor Speed Control Using MATLAB/Simulink,” J. Robot. Control, vol. 3, no. 1, pp. 8–13, 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d9141203-24d5-4e45-bff3-20e1c81cb036