Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 33, No. 2 | 381--390
Tytuł artykułu

Catalyst free growth of single-crystalline bismuth nanorods by closed space sublimation technique

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, bismuth (Bi) thin films having thickness of 335 nm have been deposited onto a glass substrate by closed space sublimation (CSS) technique. Besides this, spontaneous growth of Bi nanorods has also been investigated for the first time, without template and catalyst assistance in a substrate temperature range of 380 to 430 degrees C using CSS technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to investigate microstructure, morphology and roughness of the Bi nanorods. The diameter and length ranges of Bi nanorods were 80 to 400 nm and 3 to 5 mu m, respectively. Moreover, they exhibited a rhombohedral structure with a dominant peak indexed at (012), (104), and (110). The mass percentage of Bi, determined by energy dispersive X-ray (EDX), was 99.93 %. The studies of electrical resistivity, Hall coefficient, magnetoresistivity, hole mobility and carrier concentration of Bi thin films were performed at 300 to 350 K and the electrical properties were found to be a function of temperature. The basic aim was to investigate the spectacular evolution of Bi nanostructures on as-deposited thin films and effects of thickness on their structural, electrical and dielectric properties. Detailed examination of SEM micrographs eliminated all other growth modes except self-catalytic tip growth by Vapor-Solid (VS) growth process which is believed to provide the driving force for spontaneous nanorod growth at high substrate temperature. Deposition of thinner Bi films provided a new possibility for fabrication of Bi nanorods of high quality.
Wydawca

Rocznik
Strony
381--390
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan, smartbrainz786@gmail.com
autor
  • Thermal Transport Laboratory, School of Chemical and Materials Engineering, National University of Science and Technology (NUST), Islamabad, Pakistan
Bibliografia
  • [1] GALYON G.T., A history of tin whisker theory: 1946 to 2004, in: SMTA International Conference, Chicago, 2004.
  • [2] CAO Y.Q., ZHU T.J., ZHAO X.B., J. Alloy. Compd., 449 (1) (2008), 109.
  • [3] DUAN X., YANG J., ZHU W., FAN X.A., XIAO C., Mater. Lett., 61 (22) (2007), 4341.
  • [4] GUJAR T.P., SHINDE V.R., LOKHANDE C.D., MANE R.S., HAN S.H., Appl. Surf. Sci., 250 (1) (2005), 161.
  • [5] DRESSELHAUS M.S., LIN Y.M., CRONIN S.B., RABIN O., BLACK M.R., DRESSELHAUS G., KOGA T., Semicond. Semimet., 71 (2001), 1.
  • [6] SAINI M., ZHENG S.H., WANG W., CHIEN C.L., MORIN S., Meet. Abstr., 26 (2011), 1516.
  • [7] TAKAYAMA A., SATO T., SOUMA S., OGUCHI T., TAKAHASHI T., Nano Lett., 12 (4) (2012), 1776.
  • [8] CAO S., GUO C., WANG Y., MIAO J., ZHANG Z., LIU Q., Solid State Commun., 149 (1) (2009), 87.
  • [9] REPPERT J., RAO R.,SKOVE M., HE J., CRAPS M., TRITT T., RAO A.M., Chem. Phys. Lett., 442 (4) (2007), 334.
  • [10] KIM H.W., LEE J.W., SHIM S.H., Sensor. Actuat. BChem., 126 (1) (2007), 306.
  • [11] WANG Y., XU G., YANG L., REN Z., WEI X., WENG W., HAN G., Ceram. Int., 35 (4) (2009), 1657.
  • [12] HUCZKO A., Appl. Phys. A-Mater., 70 (4) (2000), 365
  • [13] STANLEY S.A., STUTTLE C., CARUANA A.J., CROPPER M.D., WALTON A.S.O., J. Phys. D Appl. Phys., 45 (43) (2012), 435304.
  • [14] FENG L., MAO D., TANG J., COLLINS R.T., TREFNY J.U., J. Electron. Mater., 25 (9) (1996), 1422.
  • [15] WEBER J., SINGHAL R., ZEKRI S., KUMAR A., Int. Mater. Rev., 53 (4) (2008), 235.
  • [16] JOHN V., MAHALINGAM T., CHU J.P., Solid State Electron., 49 (1) (2005), 3.
  • [17] HAM J., SHIM W., OH K.H., VOORHEES P.W., LEE W., Appl. Phys. Lett., 98 (4) (2011), 043102.
  • [18] YING J.Y., ZHANG Z., ZHANG L., DRESSELHAUS M.S., U.S. Patent No. 6,359,288, Washington, DC, 2002.
  • [19] YANG G., JUNG Y., CHUN S., KIM D., KIM J., Thin Solid Films, 546 (2013), 375.
  • [20] LI L., ZHANG Y., LI G., ZHANG L., Chem. Phys. Lett., 378 (3) (2003), 244.
  • [21] MAGESHWARI K., SATHYAMOORTHY R., Vacuum, 86 (12) (2012), 2029.
  • [22] GUJAR T.P., SHINDE V.R., LOKHANDE C.D., HAN S.H., Mater. Sci. Eng. B-Adv., 133 (1) (2006), 177.
  • [23] ZHU J., PENG H., MARSHALL A.F., BARNETT D.M., NIX W.D., CUI Y., Nat. Nanotechnol., 3 (8) (2008), 477.
  • [24] FANFAIR D.D., KORGEL B.A., Cryst. Growth Des., 5 (5) (2005), 1971.
  • [25] ZHANG Y., HE K., CHANG C.Z., SONG C.L., WANG L.L., CHEN X., XUE Q.K., Nat. Phys., 6 (8) (2010), 584.
  • [26] HU J.Q., LI Q., WONG N.B., LEE C.S., LEE S.T., Chem. Mater., 14 (3) (2002), 1216.
  • [27] MAYER L., RICKETT R., STENEMANN H., J. Appl. Phys., 33 (3) (1962), 982.
  • [28] LEONTIE L., CARAMAN M., ALEXE M., HARNAGEA C., Surf. Sci., 507 (2002), 480.
  • [29] KIM D.H., LEE S.H., KIM J.K., LEE G.H., Appl. Surf. Sci., 252 (10) (2006), 3525.
  • [30] LIU K., CHIEN C.L., SEARSON P.C., YU-ZHANG K., Appl. Phys. Lett., 73 (10) (1998), 1436.
  • [31] FANG L., LUO H., CHENG P., WANG Z., JIA Y., MU G., WEN H.H., Phys. Rev. B, 80 (14) (2009), 140508.
  • [32] KAEVAND T., KALDA J., LILLE ¨U., Int. J. Renew. Energ. Biofuel., 2013 (2013), 1.
  • [33] YANG F.Y., LIU K., HONG K., REICH D.H., SEARSON P.C., CHIEN C.L., Science, 284 (5418) (1999), 1335.
  • [34] PATIL S., PURI V.R., Arch. Appl. Sci. Res., 3 (2011), 14.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d8f8f636-1953-41c4-8792-6239844af7a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.