Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 36, no. 2 | 437--449
Tytuł artykułu

Knee bone segmentation from MRI: A classification and literature review

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Segmentation of cartilage from Magnetic Resonance (MR) images has evolved as a tool for the diagnosis of knee joint pathologies. However, accuracy and reproducibility of automated methods of cartilage segmentation may require the prior extraction of bone surfaces from MR imaging sequences specifically designed to evidence the cartilage and not the bone. Thus a priori knowledge of knee joint structures and fully automated segmentation methods are adopted to provide reliable detection of bone surfaces. In this paper, we review knee bone segmentation methods from MR images. We classified the methods proposed in literature according to the level of a priori knowledge, the level of automation and the level of manual user interaction. Furthermore we discuss the segmentation results in literature in relation to the MR sequences used to image the bone.
Wydawca

Rocznik
Strony
437--449
Opis fizyczny
Bibliogr. 73 poz., rys., tab., wykr.
Twórcy
  • Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy, andrea.aprovitola@na.icar.cnr.it
autor
  • Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), Via Pietro Castellino 111, 80131 Naples, Italy, luigi.gallo@na.icar.cnr.it
Bibliografia
  • [1] Teichtahl AJ, Wluka AE, Davies-Tuck ML, Ciccutini FM. Imaging of knee osteoarthritis. Best Pract Res Clin Reumatol 2008;22(6):1061–74.
  • [2] Eckstein F, Ciccutini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthr Cartil 2006;14(1):46–75.
  • [3] Ziegler R, Fischer G, Müller W, Göbel M. The virtual reality arthroscopy training simulator. Comput Biol Med 2005;25 (2):193–203.
  • [4] Duncan JS, Ayache N. Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intel 2000;22(1):85–105.
  • [5] Peterfy CG, Gold G, Eckstein F, Ciccutini F, Dardzinski B, Stevens R. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthr Cartil 2006;14(Suppl. 1): A95–111.
  • [6] Ciccutini F, Hankin J, Jones G, Wluka A. Comparison of conventional standing knee radiographs and magnetic resonance imaging in assessing the progressions of tibiofemoral joint osteoarthritis. Osteoarthr Cartil 2005;13 (8):722–7.
  • [7] Lang P, Noorbakhsh F, Yoshioka H. MR imaging of articular cartilage: current state and recent development. Radiol Clin N Am 2005;43(4):629–39.
  • [8] Sun Y, Teo EC, Zhang QH. Discussions of Knee joint segmentation. International Conference on Biomedical and Pharmaceutical Engineering-ICBPE; 2006.
  • [9] Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee. Phys Med Biol 2007;52(6):1617–31.
  • [10] Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans Med Imaging 2010;29(1):1617–31.
  • [11] Dodin P, Pelletier JP, Martel-Pelletier J, Abram F. Automatic human knee cartilage segmentation from 3D magnetic resonance images. IEEE Trans Biomed Eng 2010;57(11): 2699–711.
  • [12] Kapur T, Beardsley PA, Gibson SF, Grimson W, Wells WM. Model-based segmentation of clinical knee MRI. Proceedings of IEEE International Workshop on Model- Based 3D Image Analysis; 1998. p. 97–106.
  • [13] Hendee WR, Morgan CJ. Magnetic resonance imaging part-I physical principles. West J Med 1984;141:491–500.
  • [14] Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. Am J Roentgeneol 2009;193(3):628–38.
  • [15] Zhang K, Lu W, Marziliano P. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Magn Reson Imaging 2013;31(10):1731–43.
  • [16] Dalvi R, Abugharbieh R, Wilson D, Wilson DR. Multi- contrast MR for enhanced bone imaging and segmentation. Proceedings of IEEE International Conference Engineering in Medicine & Biology Society; 2007. p. 5620–3.
  • [17] Moriya S, Miki Y, Yokobayashi T, Ishikawa M. Three-dimensional double-echo steady state (3D-DESS) magnetic resonance imaging of the knee: contrast optimization by adjusting flip angle. Acta Radiol 2009;50(5):507–11.
  • [18] Clarke LP, Velthuizen RP, Camacho MA, Heine JJ, Vaidyanathan, Hall LO, et al. MRI segmentation: methods and applications. Magn Reson Imaging 1995;13(3):343–68.
  • [19] Pham DL, Xu C, Prince JL. Current methods in medical image segmentation. Annu Rev Biomed Eng 2000;2:315–37.
  • [20] Hill DL, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001;46(3):R1–45.
  • [21] Sahoo PK, Soltani S, Wong AKC. A survey of thresholding techniques. Comput Vis Graph Image Process 1998;41 (2):233–60.
  • [22] Mallikarjuna Swamy MS, Holi MS. Knee joint cartilage visualization and quantification in normal and osteoarthritis. Proceedings of IEEE International Conference on Systems in Medicine and Biology (ICSMB); 2010. p. 148–52.
  • [23] Mallikarjuna Swamy MS, Holi S. Knee joint articular cartilage segmentation, visualization and quantification using image processing techniques: a review. Int J Comput Appl 2012;42(19):36–43.
  • [24] Mallikarjuna Swamy MS, Holi S. Knee joint articular cartilage segmentation, using radial search method, visualization and quantification. Int J Comput Appl 2012;42 (19):36–43.
  • [25] Li W, Abram F, Pelletier JP, Raynauld JP, Dorais M, d'Anjou MA, et al. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging. Arthr Res Ther 2010;12(5). P. R173:1-9.
  • [26] Adams R, Bischof L. Seeded region growing. IEEE Trans Pattern Anal Mach Intell 1994;16(6):641–7.
  • [27] Chang YL, Li X. Adaptive image region-growing. IEEE Trans Image Process 1994;3(6):868–72.
  • [28] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 2004;13(1):146–65.
  • [29] Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007;26(3):405–21.
  • [30] Lee JS, Chung YN. Integrating edge detection and thresholding approaches to segment femora and patellae from magnetic resonance images. Biomed Eng – Appl Basis Commun 2005;17(1):1–11.
  • [31] Otsu N. A threshold selection method from gray-level histogram. IEEE Trans Syst Man Cybern SMC-9. 1979. pp. 62–6.
  • [32] Dodin P, Martel-Pelletier J, Pelletier JP, Francois A. A fully automated human knee 3D MRI bone segmentation using the ray casting technique. Med Biol Eng Comput 2011;49 (12):1413–24.
  • [33] Law TY, Heng PA. Automated extraction of bronchus from 3D CT images of lung based on genetic algorithm and 3D region growing. Proc SPIE Med Imaging 2000;3979: 906–16.
  • [34] Pohle R, Toennies KD. Segmentation of medical images using adaptive region growing. Proc SPIE Med Imaging 2001;4322:1337–46.
  • [35] Köse R, Gençalioglŭ O, Şevik U. An automatic diagnosis method for the knee meniscus tears in MR images. Expert Syst Appl 2009;36:1208–16.
  • [36] Kass M, Witkin A. Snakes: active contour models. Int J Comput Vis 1998;1(4):321–31.
  • [37] MInerny T, Terzopoulos D. Deformable models in medical image analysis: a survey. Med Image Anal 1996;1(2):91–108.
  • [38] Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannebaum A. A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 1997;16(2):199–209.
  • [39] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int J Comput Vis 1997;22(1):61–79.
  • [40] Malladi R, Sethian J, Vemuri B. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intelligence 1995;17(2):158–75.
  • [41] Osher S, Sethian JA. Fronts propagating with curvature dependent speed: algorithms based on hamilton-jacobi formulation. J Comput Phys 1998;79(1):12–49.
  • [42] Sethian JA. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and material science. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press; 1999.
  • [43] Lorigo LM, Faugeras O, Grimson WEL, Keriven R, Kikinis R. Segmentation of bone in clinical MRI using texture-based geodesic active contours. Lect Notes Comput Sci Med Image Comput Assisted Interv 1998;1496:1195–204.
  • [44] Guo Y, Jiang J, Hao S, Zhan S. Distribution-based active contour model for medical image segmentation. Proceedings of the Sixth International Conference on Image and Graphics (ICIG); 2011. p. 61–5.
  • [45] Chan TF, Vese LA. Active contours without edges. IEEE Trans Image Process 2001;10(2):266–77.
  • [46] Jiang J, Guo Y, Zhan S, Li H. Segmentation of knee joints based on improved multiphase chan-vese model. Proceedings of 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE, vol. 10; 2008. p. 2418–22.
  • [47] Coleman GB, Andrews HC. Image segmentation by clustering. Proc IEEE 1979;5:773–85.
  • [48] Tolias YA, Panas SM. Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions, IEEE Trans Syst Man Cybern Part A 1998;28(3):359–69.
  • [49] Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Systems Man Cybern 2004;34 (4):1907–16.
  • [50] Pham D. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recogn Lett 1999;20:57–68.
  • [51] Folkesson J, Dam EB, Olsen OF, Pettersen P, Christiansen C. Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans Med Imaging 2007;26(1).
  • [52] Folkesson J, Carballido-Gamio J, Eckstein F, Link TM, Majumdar S. Local bone enhancement fuzzy clustering for segmentation of MR trabecular bone images. Med Phys 2010;37(1):295–302.
  • [53] Zhang D-Q, Chen S-C. A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif Intell Med 2004;32.
  • [54] Slansky J. Image Segmentation and Feature Extraction. IEEE Transactions on Systems, Man, and Cybernetics; 1978. SMC-8:237–247.
  • [55] Chuah TK, Van Reeth E, Sheah K, Chueh LP. Analysis of bone marrow in knee MRI for classification of subjects with bone marrow lesion – data from the osteoarthritis initiative. Magn Reson Imaging 2013;930–8.
  • [56] Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models – their training and application. Comput Vis Image Understand 1995;61(1):38–59.
  • [57] Heimann T, Meinzer HP. Statistical shape models for 3d medical image segmentation: a review. Med Image Anal 2009;13(4):543–63.
  • [58] Fripp J, Warfield SK, Crozier S, Ourselin S. Automatic segmentation of the knee bones using 3d active shape models. Proceedings of IEEE 18th International Conference on Pattern Recognition, ICPR, vol. 52(6); 2006. p. 167–70.
  • [59] Josephson K, Ericsson A, Karlsson J. Statistical based shape model based segmentation of medical images. Proceedings of 15th Scandinavian Conference on Image Analysis. LCNS, 3540 Springer; 2005.
  • [60] Subburaj K, Ravi B, Agarwal M. Automated identification of anatomical landmarks on 3d bone models reconstructed from CT scan images. Comput Med Imaging Graph 2009; (33):359–68.
  • [61] Fripp J, Borgeaut P, Mewes AUJ, Warfield SK, Crozier S, Ourselin S. 3D statistical shape model to embed spatial relationship information. Proceedings of Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends. An ICCV workshop of LCNS, vol. 3765; 2005. p. 51–60.
  • [62] Borgeaut P, Fripp J, Stanwell P, Saadallah R, Ourselin S. 3D statistical shape model to embed spatial relationship information. Proceedings of Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends. An ICCV workshop of LCNS, vol. 3765; 2005. p. 51–60.
  • [63] Borgeaut p, Ourselin S, Stanwell P, Ramadan S. Texture-based segmentation of the knee bones in MRI using phase information. 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro; 2006.
  • [64] Neumann A, Lorenz C. Segmentation of medical image using three-dimensional active shape models. Comput Med Imaging Graph 1998;22:133–43.
  • [65] Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S. Model-based auto segmentation of knee bones and cartilage in MRI data. Proceeding of Medical Image Analysis for the Clinic: A Grand Challenge in Conjunction with MICCAI. 2010. pp. 213–23.
  • [66] Bindernagel M, Kainmueller D, Seim H, Lamecker H, Zachow S, Hege HS. An articulated statistical shape model of the human knee. Bildverarbeitung für die Medizin 2011;3540:59–63.
  • [67] Whitey DJ, Koles ZJ. Medical image segmentation: methods and software. Proceedings of NFSI & ICFBI; 2007. p. 1–4.
  • [68] Zitova B, Flusser J. Image registration methods: a survey. Image Vis Comput 2003;21(11):977–1000.
  • [69] Fischer B, Modersitzki J. A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl 2004;380:107–24.
  • [70] Tamez-Pena Jose G, Farber G, Gonzales Patricia C, Schreyer E, Schneider E, Totterman S. Unsupervised segmentation and quantification of anatomical knee features: data from osteartrithis initiative. IEEE Trans Biomed Eng 2012;59 (4):1177–86.
  • [71] The Osteoarthritis initiative (https://oai.epi-ucsf.org/datarelease/).
  • [72] Segmentation of Knee Images 2010 (http://www.ski10.org/).
  • [73] Aprovitola A, Gallo L. Edge and junction detection improvement using the canny algorithm with a fourth order accurate derivative filter. SITIS, Tenth International Conference on Signal-Image Technology and Internet- Based Systems. 2014. pp. 104–11. http://dx.doi.org/10.1109/SITIS.2014.28.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d8c3f8ca-9f76-4b5d-b6cf-2e758d4c1a0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.