Czasopismo
2015
|
Vol. 63, no. 3
|
735--760
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Free fluid porosity and rock permeability, undoubtedly the most critical parameters of hydrocarbon reservoir, could be obtained by processing of nuclear magnetic resonance (NMR) log. Despite conventional well logs (CWLs), NMR logging is very expensive and time-consuming. Therefore, idea of synthesizing NMR log from CWLs would be of a great appeal among reservoir engineers. For this purpose, three optimization strategies are followed. Firstly, artificial neural network (ANN) is optimized by virtue of hybrid genetic algorithm-pattern search (GA-PS) technique, then fuzzy logic (FL) is optimized by means of GA-PS, and eventually an alternative condition expectation (ACE) model is constructed using the concept of committee machine to combine outputs of optimized and non-optimized FL and ANN models. Results indicated that optimization of traditional ANN and FL model using GA-PS technique significantly enhances their performances. Furthermore, the ACE committee of aforementioned models produces more accurate and reliable results compared with a singular model performing alone.
Czasopismo
Rocznik
Tom
Strony
735--760
Opis fizyczny
Bibliogr. 35 poz., rys., tab. wykr.
Twórcy
autor
- Department of Petroleum Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran, asoodeh.mojtaba@gmail.com
autor
- Department of Petroleum Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, Iran
autor
- Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
Bibliografia
- [1] Afshar, M., A. Gholami, and M. Asoodeh (2014), Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling, Korean J. Chem. Eng. 31, 3, 496-502, DOI: 10.1007/s11814-013-0248-8.
- [2] Al-Jarrah, O.M., and A. Halawani (2001), Recognition of gestures in Arabic sign language using neuro-fuzzy systems, Artif. Intell. 133, 1-2, 117-138, DOI: 10.1016/S0004-3702(01)00141-2.
- [3] Asoodeh, M. (2013), Prediction of Poisson’s ratio from conventional well log data: A committee machine with intelligent systems approach, Energ. Source. A 35, 10, 962-975, DOI: 10.1080/15567036.2011.557693.
- [4] Asoodeh, M., and P. Bagheripour (2012a), Prediction of compressional, shear, and stoneley wave velocities from conventional well log data using a committee machine with intelligent systems, Rock Mech. Rock Eng. 45, 1, 45-63, DOI: 10.1007/s00603-011-0181-2.
- [5] Asoodeh, M., and P. Bagheripour (2012b), Estimation of bubble point pressure from PVT data using a power-law committee with intelligent systems, J. Petrol. Sci. Eng. 90-91, 1-11, DOI: 10.1016/j.petrol.2012.04.021.
- [6] Asoodeh, M., and P. Bagheripour (2013a), Core porosity estimation through different training approaches for neural network: Back-propagation learning vs. genetic algorithm, Int. J. Comput. Appl. 63, 5, 11-15, DOI: 10.5120/10461-5172.
- [7] Asoodeh, M., and P. Bagheripour (2013b), Fuzzy classifier based support vector regression framework for Poisson ratio determination, J. Appl. Geophys. 96, 7-10, DOI: 10.1016/j.jappgeo.2013.06.006.
- [8] Asoodeh, M., and P. Bagheripour (2013c), Neuro-fuzzy reaping of shear wave velocity correlations derived by hybrid genetic algorithm-pattern search technique, Cent. Eur. J. Geosci. 5, 2, 272-284, DOI: 10.2478/s13533-012-0129-4.
- [9] Asoodeh, M., and K. Kazemi (2013), Estimation of bubble point pressure: Using a genetic integration of empirical formulas, Energ. Source. A 35, 12, 1102-1109, DOI: 10.1080/15567036.2011.574195.
- [10] Asoodeh, M., A. Gholami, and P. Bagheripour (2014a), Oil-CO2 MMP determination in competition of neural network, support vector regression, and committee machine, J. Disper. Sci. Technol. 35, 4, 564-571, DOI: 10.1080/01932691. 2013.803255.
- [11] Asoodeh, M., A. Gholami, and P. Bagheripour (2014b), Asphaltene precipitation of titration data modeling through committee machine with stochastically optimized fuzzy logic and optimized neural network, Fluid Phase Equilibr. 364, 67-74, DOI: 10.1016/j.fluid.2013.12.016.
- [12] Bagheripour, P., and M. Asoodeh (2013), Fuzzy ruling between core porosity and petrophysical logs: Subtractive clustering vs. genetic algorithm-pattern search, J. Appl. Geophys. 99, 35-41, DOI: 10.1016/j.jappgeo.2013.09.014.
- [13] Barhen, J., M. Zak, and S. Gulati (1989), Fast neural learning algorithms using networks with non-Lipschitizian dynamics. In: J.C. Rault (ed.), Proceedings of Neuro-Nimes ‘89, EC2 Press, Paris, 55-68.
- [14] Bataineh, K.M., M. Naji, and M. Saqer (2011), A comparison study between various fuzzy clustering algorithms, Jordan J. Mech. Ind. Eng. 5, 4, 335-343.
- [15] Breiman, L., and J.H. Friedman (1985), Estimating optimal transformations for multiple regression and correlation, J. Am. Stat. Assoc. 80, 391, 580-598, DOI: 10.1080/01621459.1985.10478157.
- [16] Chen, C.H., and Z.S. Lin (2006), A committee machine with empirical formulas for permeability prediction, Comput. Geosci. 32, 4, 485-496, DOI: 10.1016/ j.cageo.2005.08.003.
- [17] Conn, A.R., N.I.M. Gould, and P. Toint (1991), A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal. 28, 2, 545-572, DOI: 10.1137/0728030.
- [18] Gholami, A., S. Moradi, and B. Dabir (2013), A power law committee scaling equation for quantitative estimation of asphaltene precipitation, Int. J. Sci. Emerging Technol. 6, 5, 275-283.
- [19] Gupta, M.M., and H. Ding (1994), Foundations of fuzzy neural computations. In: F. Aminzadeh and M. Jamshidi (eds.), Soft Computing: Fuzzy Logic, Neural Networks, and Distributed Artificial Intelligence, Prentice Hall Inc., Upper Saddle River, 165-199.
- [20] Hagan, M.T., and M.B. Menhaj (1994), Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw. 5, 6, 989-993, DOI: 10.1109/72.
- [21] Kadkhodaie-Ilkhchi, A., M.R. Rezaee, and S.A. Moallemi (2006), A fuzzy logic approach for the estimation of permeability and rock type from conventional well log data: An example from the Kangan reservoir in the Iran offshore gas field, J. Geophys. Eng. 3, 4, 356-369, DOI: 10.1088/1742-2132/3/4/007.
- [22] Kadkhodaie-Ilkhchi, A., H. Rahimpour-Bonab, and M.R. Rezaee (2009), A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars gas field, Iran, Comput. Geosci. 35, 3, 459-474, DOI: 10.1016/j.cageo.2007.12.007.
- [23] Labani, M.M., A. Kadkhodaie-Ilkhchi, and K. Salahshoor (2010), Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin, J. Petrol. Sci. Eng. 72, 1-2, 175-185, DOI: 10.1016/j.petrol.2010.03.015.
- [24] Lippmann, R.P. (1987), An introduction to computing with neural nets, ASSP Mag. IEEE 4, 2, 4-22, DOI: 10.1109/MASSP.1987.1165576.
- [25] Malallah, A., R. Gharbi, and M. Algharaib (2006), Accurate estimation of the world crude oil PVT properties using graphical alternating conditional expectation, Energy Fuels 20, 2, 688-698, DOI: 10.1021/ef0501750.
- [26] Malki, H.A., and J. Baldwin (2002), A neuro-fuzzy based oil/gas producibility estimation method. In: Proc. Int. Jt. Conf. Neural Networks IJCNN 2002, Vol. 1, 12-17 May 2002, Honolulu, USA, 896-901, DOI: 10.1109/IJCNN.2002.1005593.
- [27] Mathworks (2011), MATLAB user’s guide. Fuzzy logic, neural network & GA and direct search toolboxes, Mathworks, Inc., CD-rom.
- [28] Mohaghegh, S. (2000a), Virtual-intelligence applications in petroleum engineering: Part 1 - Artificial neural networks, J. Petrol. Technol. 52, 9, 64-73, DOI: 10.2118/58046-JPT.
- [29] Mohaghegh, S. (2000b), Virtual-intelligence applications in petroleum engineering: Part 2 - Evolutionary computing, J. Petrol. Technol. 52, 10, 40-46, DOI: 10.2118/61925-JPT.
- [30] Mohaghegh, S. (2000c), Virtual-intelligence applications in petroleum engineering: Part 3 - Fuzzy logic, J. Petrol. Technol. 52, 11, 82-87, DOI: 10.2118/ 62415-JPT.
- [31] Ogilvie, S.R., S. Cuddy, C. Lindsay, and A. Hurst (2002), Novel methods of permeability prediction from NMR tool data, Dialog, London Petrophysical Society, London, 1-14.
- [32] Sharkey, A.J.C. (1996), On combining artificial neural nets, Connect. Sci. 8, 3-4, 299-314, DOI: 10.1080/095400996116785.
- [33] Shokir, E.M. (2007), CO2-oil minimum miscibility pressure model for impure and pure CO2 streams, J. Petrol. Sci. Eng. 58, 1-2, 173-185, DOI: 10.1016/ j.petrol.2006.12.
- [34] Xue, G., A. Datta-Gupta, P. Valko, and T. Blasingame (1996), Optimal transformations for multiple regression: application to permeability estimation from well logs, Paper No. SPE-35412, Society of Petroleum Engineers, Inc., Richardson, USA.
- [35] Zadeh, L.A. (1965), Fuzzy sets, Inf. Control. 8, 3, 338-353, DOI: 10.1016/S0019-9958(65)90241-X.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d89bb448-fbef-4a5f-af98-a6ab26c2aa6e