Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 23, iss. 1 | 192--201
Tytuł artykułu

Effect of Thermal Pretreatment on the Kinetic Parameters of Anaerobic Digestion from Recycled Pulp and Paper Sludge

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the influence of thermal pretreatment on kinetic parameters based on four kinetic models: Modified Gompertz, transference and logistic functions and first order equation. The kinetic modeling was applied on experimental results of previous study on producing methane from anaerobic digestion of Recycled Pulp and Paper Sludge (RPPS) under mesophilic conditions. We observed that the thermal pretreatment improve considerably improved the kinetic parameters mainly the methane production rate and the lag phase. Indeed, it can be noted that methane production rate μ increases significantly from a value of 4.72 to 16.27 ml/h using logistic function for 1 g VS/L added load. Then the lag phase parameter λ has dramatically decreased from 5.46 to 1.04 h using logistic function for 1.5 g VS/L added load. This means that the thermal pretreatment of RPPS accelerates the methane production process and saves time.
Wydawca

Rocznik
Strony
192--201
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco, sanae.habchi@uit.ac.ma
  • Laboratory of Organic Chemistry Catalysis and Environment, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
autor
  • Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
  • Laboratory of Electronic Systems, Information Processing, Mechanics and Energetics, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
Bibliografia
  • 1. Altaş L. 2009. Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials, 162, 1551–1556. https://doi.org/10.1016/j.jhazmat.2008.06.048
  • 2. Appels L., Degrève J., Van der Bruggen B., Van Impe J., Dewil R .2010. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource Technology, 101, 5743–5748. https://doi.org/10.1016/j.biortech.2010.02.068
  • 3. Ariunbaatar J. 2014. Methods to enhance anaerobic digestion of food waste 152. Ph.D. Thesis, Paris, university Paris-Est,France. NNT: 2014PEST1176.
  • 4. Bakraoui M., El Gnaoui Y., Lahboubi N., Karouach F., El Bari H. 2020. Kinetic study and experimental productions of methane production from UASB reactor treating wastewater from recycled pulp and paper for the continuous test. Biomass and Bioenergy ,139, 105604. https://doi.org/10.1016/j.biombioe.2020.105604
  • 5. Bakraoui M., Karouach F., Ouhammou B., Aggour M., El Bari H. 2019a. Kinetics study of the methane production from experimental recycled pulp and paper sludge by CSTR technology. Journal of Material Cycles and Waste Management, 21. https://doi.org/10.1007/s10163-019-00894-6
  • 6. Bakraoui M., Karouach F., Ouhammou B., El Bari H. 2019b. Experimental biogas production from recycled pulp and paper wastewater by biofilm technology. Biotechnology Letters, 41, 1299–1307. https://doi.org/10.1007/s10529-019-02735-w
  • 7. Beniche I., El Bari H., Siles J.A., Chica A.F., Martín M.Á. 2020. Methane production by anaerobic co-digestion of mixed agricultural waste: cabbage and cauliflower. Environmental Technology, 1–9. https://doi.org/10.1080/09593330.2020.1770341
  • 8. Blasius J.P., Contrera R.C., Maintinguer S.I., Alves de Castro M.C.A. 2020. Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. Biotechnology Reports, 27, e00503. https://doi.org/10.1016/j.btre.2020.e00503
  • 9. Borja R., Martin A., Banks C.J., Alonso V., Chica A. 1995. A kinetic study of anaerobic digestion of olive mill wastewater at mesophilic and thermophilic temperatures. Environmental Pollution, 88, 13–18.
  • 10. Cai F., Lei L., Li Y. 2019. Different bioreactors for treating secondary effluent from recycled paper mill. Science of the Total Environment, 667, 49–56. https://doi.org/10.1016/j.scitotenv.2019.02.377
  • 11. Carlsson M., Lagerkvist A., Morgan-Sagastume F. 2012. The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Management, 32, 1634–1650. https://doi.org/10.1016/j.wasman.2012.04.016
  • 12.Cesaro A., Belgiorno V. 2014. ChemInform Abstract: Pretreatment Methods to Improve Anaerobic Biodegradability of Organic Municipal Solid Waste Fractions. Chemical Engineering Journal, 240, 24–37. https://doi.org/10.1002/chin.201415287
  • 13. Chen T., Jin Y., Liu F., Meng X., Li H., Nie Y. 2012. Effect of hydrothermal treatment on the levels of selected indigenous microbes in food waste. Journal of Environmental Management, 106, 17–21. https://doi.org/10.1016/j.jenvman.2012.03.045
  • 14.Chen T., Jin Y., Qiu X., Chen X. 2014. A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods. Expert Systems with Applications, 41, 7328–7337. https://doi.org/10.1016/j.eswa.2014.06.006
  • 15. El Gnaoui Y., Sounni F., Bakraoui M., Karouach F., Benlemlih M., Barz M., El Bari H. 2020. Anaerobic co-digestion assessment of olive mill wastewater and food waste: Effect of mixture ratio on methane production and process stability. Journal of Environmental Chemical Engineering, 8, 103874. https://doi.org/10.1016/j.jece.2020.103874
  • 16. El-Mashad H.M. 2013. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae. Bioresource Technology, 132, 305–312. https://doi.org/10.1016/j.biortech.2012.12.183
  • 17. Gandhi P., Paritosh K., Pareek N., Mathur S., Lizasoain J., Gronauer A., Bauer A., Vivekanand V. 2018. Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Research International, 2018, 1–13. https://doi.org/10.1155/2018/9416249
  • 18. Hamraoui K., Gil A., El Bari H., Siles Lopez J., Chica A., Martín M. 2020. Evaluation of hydrothermal pretreatment for biological treatment of lignocellulosic feedstock (pepper plant and eggplant). Waste Management ,102 (2020), 76–84 https://doi.org/10.1016/j.wasman.2019.10.020
  • 19. Karouach F., Bakraoui M., Zguani A., Hammadi A., EL Bari H. 2021. Co-digestion of industrial recycled pulp and paper sludge with vinasse wastewater: experimental and theoretical study. International Journal of Environmental Science and Technology.
  • 20. Kim J.K., Oh B.R., Chun Y.N., Kim S.W .2006. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. Journal of Bioscience and Bioengineering, 102, 328–332. https://doi.org/10.1263/jbb.102.328
  • 21. Kiran E.U., Trzcinski A., Ng W.J., Liu Y. 2014. Bioconversion of food waste to energy: a review. Fuel, 134, 389–399.
  • 22. Lahboubi N., Kerrou O., Karouach F., Bakraoui M., Schüch A., Schmedemann K., Stinner W., El Bari H., Essamri A .2020. Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00864-1
  • 23. Lahboubi N., Naim I., Habchi S., Essamri A., El Bari H. 2021. Effect of Combined Alkali-Thermal Pretreatment on Methane Potential from BMP of Date Palm Empty Fruit Bunch, in: Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021). Springer International Publishing, Cham, pp. 301–310. https://doi.org/10.1007/978-3-030-75315-3_34
  • 24. Li Y., Jin Y., Li J., Li H., Yu Z. 2016. Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Applied Energy, 172, 47–58. https://doi.org/10.1016/j.apenergy.2016.03.080
  • 25. Marin J., Kennedy K.J., Eskicioglu C. 2011. Enhanced solubilization and anaerobic biodegradability of source-separated kitchen waste by microwave pre-treatment. Waste Management & Research: The Journal for a Sustainable Circular Economy, 29, 208–218. https://doi.org/10.1177/0734242X10362705
  • 26. Mejdoub H., Ksibi H. 2015. Regulation of Biogas Production through Waste Water Anaerobic Digestion Process: Modeling and Parameters Optimization. Waste and Biomass Valorization, 6, 29–35. https://doi.org/10.1007/s12649-014-9324-5
  • 27.Bakraoui, M., lahlou Y, Karouach F, Lahboubi N., Kerrou O., Aggour M., El Bari H. 2019. Effect of Thermal Pretreatment on Anaerobic Digestion Performance of Recycled Paper Sludge, in: 2019 7th International Renewable and Sustainable Energy Conference (IRSEC). Presented at the 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), IEEE, Agadir, Morocco, pp. 1–6. https://doi.org/10.1109/IRSEC48032.2019.9078230
  • 28. Naran E., Toor U.A., Kim D.J. 2016. Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. International Biodeterioration and Biodegradation, 113, 17–21. https://doi.org/10.1016/j.ibiod.2016.04.011
  • 29. Panigrahi S., Sharma H.B., Dubey B.K. 2020. Anaerobic co-digestion of food waste with pretreated yard waste: A comparative study of methane production, kinetic modeling and energy balance. Journal of Cleaner Production, 243, 118480. https://doi.org/10.1016/j.jclepro.2019.118480
  • 30. Syaichurrozi I., Budiyono and Sumardiono S. 2013. Predicting kinetic model of biogas production and biodegradability organic materials: biogas production from vinasse at variation of COD/N ratio. Bioresource Technology, 149, 390–397. https://doi.org/10.1016/j.biortech.2013.09.088
  • 31. Ware A., Power N. 2017. Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renewable Energy, 104, 50–59. https://doi.org/10.1016/j.renene.2016.11.045
  • 32. Zhang A., Yang S.T. 2009. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochemistry, 44, 1346–1351. https://doi.org/10.1016/j.procbio.2009.07.013
  • 33. Zhang J., Wang S., Lang S., Xian P., Xie T. 2016. Kinetics of combined thermal pretreatment and anaerobic digestion of waste activated sludge from sugar and pulp industry. Chemical Engineering Journal, 295, 131–138. https://doi.org/10.1016/j.cej.2016.03.028
  • 34. Zhen G., Lu X., Kobayashi T., Li Y.Y., Xu K., Zhao Y. 2015. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Applied Energy, 148, 78–86. https://doi.org/10.1016/j.apenergy.2015.03.038
  • 35. Zwietering M.H., Jongenburger I., Rombouts F.M., van’t Riet K. 1990. Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology, 56, 1875–1881.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d805668d-499b-4449-ad13-b8345e9d0bb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.