Czasopismo
2012
|
Vol. 60, no 2
|
123--132
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if π:A→Mn(C) is a finite-dimensional representation of a Hopf C*-algebra, we prove that the idempotent state associated to its Hopf image A′ must be the convolution Cesàro limit of the linear functional φ=tr∘π. We then discuss some consequences of this result, notably to inner linearity questions.
Słowa kluczowe
Rocznik
Tom
Strony
123--132
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise, France, teodor.banica@u-cergy.fr
autor
- Department of Mathematics University of Franche-Comté 16 route de Gray 25030 Besançon Cedex, France, uwe.franz@math.univ-fcomte.fr
autor
- Institute of Mathematics Polish Academy of Sciences Sniadeckich 8 P.O. Box 21 00-956 Warszawa, Poland, a.skalski@impan.pl
Bibliografia
- [1] N. Andruskiewitsch and J. Bichon, Examples of inner linear Hopf algebras, Rev. Un. Mat. Argentina 51 (2010), 7–18.
- [2] T. Banica, Quantum permutations, Hadamard matrices, and the search for matrix models, arXiv:1109.4888.
- [3] T. Banica and J. Bichon, Hopf images and inner faithful representations, Glasgow Math. J. 52 (2010), 677–703.
- [4] T. Banica, J. Bichon and J.-M. Schlenker, Representations of quantum permutation algebras, J. Funct. Anal. 257 (2009), 2864–2910.
- [5] T. Banica and B. Collins, Integration over the Pauli quantum group, J. Geom. Phys. 58 (2008), 942–961.
- [6] B. Collins and P. Sniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773–795.
- [7] S. Dascalescu, C. Nastasescu and S. Raianu, Hopf Algebras. An Introduction, Dekker, 2001.
- [8] M. S. Dijkhuizen and T. H. Koornwinder, CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys. 32 (1994), 315–330.
- [9] U. Franz and A. Skalski, On idempotent states on quantum groups, J. Algebra 322 (2009), 1774–1802.
- [10] —, —, A new characterisation of idempotent states on finite and compact quantum groups, C. R. Math. Acad. Sci. Paris 347 (2009), 991–996.
- [11] U. Franz, A. Skalski and R. Tomatsu, Idempotent states on compact quantum groups and their classification on Uq(2), SUq(2), and SOq(3), J. Noncommut. Geom., to appear.
- [12] V. F. R. Jones, Planar algebras I, arXiv:math/9909027.
- [13] Y. Kawada and K. Itô, On the probability distribution on a compact group I, Proc. Phys.-Math. Soc. Japan 22 (1940), 977–998.
- [14] A. Pal, A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys. 37 (1996), 75–77.
- [15] P. Salmi and A. Skalski, Idempotent states on locally compact quantum groups, Quart. J. Math., to appear; arXiv:1102.2051.
- [16] S. Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147–184.
- [17] A. Van Daele, The Haar measure on a compact quantum group, Proc. Amer. Math. Soc. 123 (1995), 3125–3128.
- [18] S. Z. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195–211.
- [19] S. L. Woronowicz, Compact matrix pseudogroups, ibid. 111 (1987), 613–665.
- [20] —, Compact quantum groups, in: Symétries quantiques, North-Holland, 1998, 845–884.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-d7ee7f3e-b501-4190-bb8a-d74b64389338