Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 60, no 2 | 123--132
Tytuł artykułu

Idempotent States and the Inner Linearity Property

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We find an analytic formulation of the notion of Hopf image, in terms of the associated idempotent state. More precisely, if π:A→Mn(C) is a finite-dimensional representation of a Hopf C*-algebra, we prove that the idempotent state associated to its Hopf image A′ must be the convolution Cesàro limit of the linear functional φ=tr∘π. We then discuss some consequences of this result, notably to inner linearity questions.
Słowa kluczowe
Wydawca

Rocznik
Strony
123--132
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
autor
  • Institute of Mathematics Polish Academy of Sciences Sniadeckich 8 P.O. Box 21 00-956 Warszawa, Poland, a.skalski@impan.pl
Bibliografia
  • [1] N. Andruskiewitsch and J. Bichon, Examples of inner linear Hopf algebras, Rev. Un. Mat. Argentina 51 (2010), 7–18.
  • [2] T. Banica, Quantum permutations, Hadamard matrices, and the search for matrix models, arXiv:1109.4888.
  • [3] T. Banica and J. Bichon, Hopf images and inner faithful representations, Glasgow Math. J. 52 (2010), 677–703.
  • [4] T. Banica, J. Bichon and J.-M. Schlenker, Representations of quantum permutation algebras, J. Funct. Anal. 257 (2009), 2864–2910.
  • [5] T. Banica and B. Collins, Integration over the Pauli quantum group, J. Geom. Phys. 58 (2008), 942–961.
  • [6] B. Collins and P. Sniady, Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), 773–795.
  • [7] S. Dascalescu, C. Nastasescu and S. Raianu, Hopf Algebras. An Introduction, Dekker, 2001.
  • [8] M. S. Dijkhuizen and T. H. Koornwinder, CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys. 32 (1994), 315–330.
  • [9] U. Franz and A. Skalski, On idempotent states on quantum groups, J. Algebra 322 (2009), 1774–1802.
  • [10] —, —, A new characterisation of idempotent states on finite and compact quantum groups, C. R. Math. Acad. Sci. Paris 347 (2009), 991–996.
  • [11] U. Franz, A. Skalski and R. Tomatsu, Idempotent states on compact quantum groups and their classification on Uq(2), SUq(2), and SOq(3), J. Noncommut. Geom., to appear.
  • [12] V. F. R. Jones, Planar algebras I, arXiv:math/9909027.
  • [13] Y. Kawada and K. Itô, On the probability distribution on a compact group I, Proc. Phys.-Math. Soc. Japan 22 (1940), 977–998.
  • [14] A. Pal, A counterexample on idempotent states on a compact quantum group, Lett. Math. Phys. 37 (1996), 75–77.
  • [15] P. Salmi and A. Skalski, Idempotent states on locally compact quantum groups, Quart. J. Math., to appear; arXiv:1102.2051.
  • [16] S. Vaes, Strictly outer actions of groups and quantum groups, J. Reine Angew. Math. 578 (2005), 147–184.
  • [17] A. Van Daele, The Haar measure on a compact quantum group, Proc. Amer. Math. Soc. 123 (1995), 3125–3128.
  • [18] S. Z. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195–211.
  • [19] S. L. Woronowicz, Compact matrix pseudogroups, ibid. 111 (1987), 613–665.
  • [20] —, Compact quantum groups, in: Symétries quantiques, North-Holland, 1998, 845–884.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d7ee7f3e-b501-4190-bb8a-d74b64389338
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.