Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 26, Iss. 4 | 225--234
Tytuł artykułu

Nanoscale dosimetric consequences around bismuth, gold, gadolinium, hafnium, and iridium nanoparticles irradiated by low energy photons

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study, nanoscale physical dose distributions around five potential nanoparticles were compared. Five potential nanoparticles including bismuth, gold, gadolinium, hafnium, and iridium nanoparticles in the form of a sphere with a diameter of 50 nm were simulated in a water medium. The MCNPX (2.7.0) Monte Carlo code with updated libraries was used for calculations of electron dose deposition and electron flux in water from 25 nm up to 4000 nm with a step of 25 nm. Also, secondary electron spectra after irradiation of nanoparticles with mono-energetic photons with energies of 30, 60, 100 keV were derived. The nano-scale distance-dose curves showed a very steep gradient with distance from nanoparticle surface up to 60 nm and after this point, a gradual decrease was seen. The dose deposition characteristics in the nano-scale were dependent on the type of nanoparticle as well as photon energy. Our results concluded that for each photon energy in the energy range of 30-100 keV, a suitable nanoparticle can be selected to boost the effect of energy deposition by low energy photon beams used in brachytherapy.
Wydawca

Rocznik
Strony
225--234
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
  • Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Iran
  • Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Iran
  • Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Bibliografia
  • 1. Afkham Y, Mesbahi A, Alemi A, et al. Design and fabrication of a Nano-based neutron shield for fast neutrons from medical linear accelerators in radiation therapy. Radiat Oncol. 2020;15:105.
  • 2. Ahmad R, Schettino G, Royle G, et al. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part Part Syst Charact. 2020;37(4):1900411.
  • 3. Badrigilan S, Shaabani B, Aghaji NG, Mesbahi A. Graphene Quantum Dots-Coated Bismuth Nanoparticles for Improved CT Imaging and Photothermal Performance. Int J Nanosci. 2020;19(1):18500453.
  • 4. Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A. Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots: Three-in-one theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagn Photodyn Ther. 2019;25:504-514
  • 5. Ghasemi-Jangjoo A, Ghiasi H. Monte Carlo study on the gold and gadolinium nanoparticles radio-sensitizer effect in the prostate 125I seeds radiotherapy. Pol J Med Phys Eng. 2019;25(3):165-169.
  • 6. Kuncic Z, Lacombe S. Nanoparticle radio-enhancement: Principles, progress and application to cancer treatment. Phys Med Biol. 2018;63:02TR01.
  • 7. Mortezazadeh T, Gholibegloo E, Khoobi M, et al. In vitro and in-ávivo characteristics of doxorubicin-loaded cyclodextrine-based polyester modified gadolinium oxide nanoparticles: a versatile targeted theranostic system for tumour chemotherapy and molecular resonance imaging. J Drug Targeting. 2020;28(5):533-546.
  • 8. Pirayesh Islamian J, Hatamian M, Aval NA, et al. Targeted superparamagnetic nanoparticles coated with 2-deoxy-D-gloucose and doxorubicin more sensitize breast cancer cells to ionizing radiation. Breast. 2017;33:97-103.
  • 9. Sadeghian M, Akhlaghi P, Mesbahi A. Investigation of imaging properties of novel contrast agents based on gold, silver and bismuth nanoparticles in spectral computed tomography using Monte Carlo simulation. Pol J Med Phys Eng. 2020;26:21-29.
  • 10. Yazdani P, Mansouri E, Eyvazi S, et al. Layered double hydroxide nanoparticles as an appealing nanoparticle in gene/plasmid and drug delivery system in C2C12 myoblast cells. Artif Cells Nanomed Biotechnol. 2019;47(1):436-442.
  • 11. Delorme R, Taupin F, Flaender M, et al. Comparison of gadolinium nanoparticles and molecular contrast agents for radiation therapy-enhancement. Med.Phys. 2017;44(11):5949-5960.
  • 12. Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Rad Res. 2017;58(4):405-411.
  • 13. Jangjoo AG, Ghiasi H, Mesbahi A. A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds. Pol J Med Phys Eng. 2019;25(2):87-92.
  • 14. Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012;8:1167-1181.
  • 15. Matsumoto K, Saitoh H, Doan TLH, et al. Destruction of tumor mass by gadolinium-loaded nanoparticles irradiated with monochromatic X-rays: Implications for the Auger therapy. Sci Rep. 2019;9:13275.
  • 16. McMahon SJ, Mendenhall MH, Jain S, Currell F. Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Phys Med Biol .2008;53:5635-5651.
  • 17. Mesbahi A. A review on gold nanoparticles radiosensitization effect in radiation therapy of cancer. Rep Pract Oncol Radiother. 2010;15(6):176-180.
  • 18. McMahon SJ, Hyland WB, Muir MF,. Erratum: Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. (Scientific Reports). Sci Rep. 2013;3:1725.
  • 19. Verry C, Porcel E, Chargari C, et al. Use of nanoparticles as radiosensitizing agents in radiotherapy: State of play. Cancer Radiother. 2019;23(8):917-921.
  • 20. Carter JD, Cheng NN, Qu Y, et al. Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B. 2007;111(40):11622-11625
  • 21. Casta R, Champeaux JP, Cafarelli P, et al. Model for electron emission of high-Z radio-sensitizing nanoparticle irradiated by X-rays. J Nanopart Res. 2014;16:2480.
  • 22. Casta R, Champeaux JP, Sence M, et al. Comparison between gold nanoparticle and gold plane electron emissions: a way to identify secondary electron emission. Phys Med Biol. 2015;60(23):9095-9105
  • 23. Casta R, Champeaux KP, Sence M, et al. Gold nanoparticle electron and photon emissions after X-ray absorption. J Phys Conf Ser. 2015;635(10):102018.
  • 24. Leung MKK, Chow JCL, Chithrani BD, et al. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys. 2011;38:624-631
  • 25. Liu Y, Zhang P, Li F, et al. Metal-based NanoEnhancers for future radiotherapy: Radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;81824-1849.
  • 26. Sancey L, Lux F, Kotb S, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 2014;87:20140134.
  • 27. Taupin F, Flaender M, Delorme R, et al. Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol. 2015;60(11):4449-4464.
  • 28. Sherck NJ, Won YY. Technical Note: A simulation study on the feasibility of radiotherapy dose enhancement with calcium tungstate and hafnium oxide nano- and microparticles. Med Phys. 2017;44:6583-6588.
  • 29. Botchway SW, Coulter JA, Currell FJ. Imaging intracellular and systemic in vivo gold nanoparticles to enhance radiotherapy. Br J Radiol. 2015;881054):20150170.
  • 30. Tsiamas P, Liu B, Cifter F, et al. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol. 2013;58(3):451-464.
  • 31. Villagomez-Bernabe B, Currell FJ. Physical Radiation Enhancement Effects Around Clinically Relevant Clusters of Nanoagents in Biological Systems. Sci Rep. 2019;9:8156.
  • 32. Zangeneh M, Nedaei HA, Mozdarani H, et al. Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies. Mater Sci Eng C. 2019;103:109739.
  • 33. McMahon SJ, Hyland WB, Muir MF, et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep. 2011;1:18. doi:10.1038/srep00018.
  • 34. Jamil MZAM, Mohamed F, Rosli NRAM, et al. Effect of gamma irradiation on magnetic gadolinium oxide nanoparticles coated with chitosan (GdNPs-Cs) as contrast agent in magnetic resonance imaging. Radiat Phys Chem. 2019;165:108407.
  • 35. Douglass M, Bezak E, Penfold S. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Med.Phys. 2013;40(7):071710.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d7675dd7-1d00-4636-98f8-fefb9d29a826
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.