Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 11 | 10--19
Tytuł artykułu

Analysis of the effect of variable parameters on the shear capacity of elements reinforced with FRP bars

Treść / Zawartość
Warianty tytułu
PL
Analiza wpływu parametrów zmiennych na nośność na ścinanie elementów zbrojonych prętami FRP
Języki publikacji
EN PL
Abstrakty
EN
This paper presents an analysis of variable parameters on the shear capacity of elements reinforced with FRP bars: longitudinal reinforcement ratio; transverse reinforcement ratio; axial stiffness of reinforcement; shear slenderness; concrete compressive strength; spacing of stirrups; depth; shape of beam cross-section; inclination of transverse reinforcement and bond behaviour of stirrups.
PL
W artykule przedstawiono analizę parametrów zmiennych na nośność na ścinanie elementów zbrojonych prętami FRP: stopnia zbrojenia podłużnego; stopnia zbrojenia poprzecznego; sztywności osiowej zbrojenia; smukłości ścinania; wytrzymałości betonu na ściskanie; rozstawu strzemion; wysokości użytecznej; kształtu przekroju poprzecznego belki; nachylenia zbrojenia poprzecznego oraz przyczepności strzemion.
Wydawca

Rocznik
Tom
Strony
10--19
Opis fizyczny
Bibliogr. 45 poz., il.
Twórcy
  • Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska
Bibliografia
  • [1] Szczech D., Kotynia R. Badania na ścinanie belek zbrojonych podłużnie i poprzecznie prętami FRP. Materiały Budowlane. 2024; 4: 32 ÷ 36.
  • [2] Zhao W., Maruyama K., Suzuki H. Shear behavior of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement. RILEM. 1995.
  • [3] Gross S.P., Dinehart D.W., Yost J.R., Theisz P.M. Experimental tests of high-strength concrete beams reinforced with CFRP bars. Proc. of the ACMBS, 2004.
  • [4] Razaqpur A.G., Isgor B.O., Greenaway S., Selley A. Concrete Contribution to the Shear Resistance of Fiber Reinforced Polymer Reinforced Concrete Members. Jour. of Comp. for Constr. 2004; 8(5): 452 - 460.
  • [5] Nehdi M., El Chabib H., Saïd A.A. Proposed shear design equations for FRP reinforced concrete beams based on genetic algorithms approach. Jour. of Mat. in Civil Eng. 2007; 19 (12): 1033 - 1042.
  • [6] El-Sayed A.K., El-Salakawy E.F., Benmokrane B. Shear Strength of FRP-Reinforced Concrete Beams without Transverse Reinforcement. ACI Struct. Jour. 2006; 103 (2): 235 - 2436.
  • [7] CAN/CSA-S806-12 Design and construction of building structures with fibre-reinforced polymers, Canadian Standards Association, 2012.
  • [8] Tottori S., Wakui H. Shear capacity of RC and PC beams using FRP reinforcement. Special Publ. 1993; 138: 615 - 632.
  • [9] Rao G.A., Sundaresan R. Size Dependent Shear Strength Of Reinforced Concrete Deep Beams Based On Refined Strut-And-Tie Model. Symp. 2014; 300: 1 - 26.
  • [10] JSCE. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. 1997.
  • [11] Nagasaka T., Fukuyama H., Tanigaki M. Shear performance of concrete beams reinforced with FRP stirrups. Special pub. 1993; 138: 789 - 81.
  • [12] Jumaa G.B., Yousif A.R. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Constr. and Building Mat. 2019; 209: 77 - 94.
  • [13] CNR-DT-203/2006 Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. 2007.
  • [14] ACI 440.1R-15 Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute. 2015.
  • [15] Tureyen A.K., Frosch R.J. Shear tests of FRP-reinforced concrete beams without stirrups. ACI Struct. Jour. 2002; 99(4): 427 - 434.
  • [16] Yang F. Deformation Behaviour of Beams Reinforced with Fibre Reinforced Polymer Bars under Bending and Shear. Diss. PhD. Sheffield, 2015.
  • [17] Cholostiakow S., Di Benedetti M., Pilakoutas K., Guadagnini M. Effect of Beam Depth on Shear Behaviour of FRPRC Beams. J. of Comp. for Constr. 10.1061, 2018.
  • [18] Maranan G., Manalo A., Benmokrane B., Karunasena W., Mendis P., Nguyen T.Q. Shear behaviour of geopolymer-concrete beams transversely reinforced with continuous rectangular GFRP composite spirals” Comp. Struct. 2018; 187.
  • [19] Said M., Adam M.A., Mahmoud A.A., Shanour A.S. Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Constr. and Building Mat. 2016; 102: 574 - 591.
  • [20] Ahmed A., El-Salakawy E.F., Benmokrane B. Performance Evaluation of Glass Fiber-Reinforced Polymer Shear Reinforcement for Concrete Beams. ACI Struc. Jour. 2010; no. 107.
  • [21] Hoult N., Sherwood E.G., Bentz E., Collins M.P. Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs? Jour. of Comp. for Constr. 2008; 12 (2): 125 - 133.
  • [22] Razaqpur A., Spadea S. Resistenza a taglio di elementi di calcestruzzzo reinforzatti e staffe di FRP. Proceedings, AIAS 2010.
  • [23] Alam M.S., Hussein A. Size Effect on Shear Strength of FRP Reinforced Concrete Beams without Stirrups. Jour. of Comp. for Constr. 2013; 17(4): 507 - 516.
  • [24] Ashour A.F., Kara I.F. Size effect on shear strength of FRP reinforced concrete beams. Composities Part B Eng. 2014; 60: 612 - 620.
  • [25] Kani G.N.J. How safe are our large reinforced concrete beams? ACI Journal. 1967; 64(3): 128 - 141.
  • [26] Collins M.P., Kuchma D. How safe are our large, lightly reinforced concrete beams, slabs and footings. ACI Struc. Journal 1999; 96(4): 482 - 490.
  • [27] Frosch R.J. Behavior of large-scale reinforced concrete beams with minimum shear reinforcement. ACI Struc. Journal. 2000; 97(6): 814 - 820.
  • [28] Lubell A., Sherwood T., Bentz E., Collins M. Safe shear design of large, wide beams. Concrete Internat. 2004; 26(1): 66 - 78.
  • [29] Matta F., Nanni A., Galati N., Mosele F. Size effect on shear strength of concrete beams reinforced with FRP bars. Proc. of the 6th Inter. Conf. on FraMCoS-6. 2007; 2: 17 - 22.
  • [30] Bentz E.C., Massam L., Collins M.P. Shear strength of large concrete members with FRP reinforcement. Jour. of Comp. for Constr., 637-646. 2010.
  • [31] Matta F., El-Sayed A.K. Nanni A., Benmokrane B. Size effect on concrete shear strength in beams reinforced with fiber-reinforced polymer bars. ACI Struc. Journal. 2013; 110(4): 617.
  • [32] Ibell T., Burgoyne J. Use of Fiber-Reinforced Plastics Versus Steel for Shear Reinforcement of Concrete. ACI Struct. Jour. 1999; V. 96, No. 6: 997 1002.
  • [33] Leonhardt F., Walther R. Shear Tests on Beams With and Without Shear Reinforcement. Deutscher Ausschuss für Stahlbeton. 1962; 151(151): 83.
  • [34] Szczech D., Kotynia R. Shear tests on GFRP reinforced concrete beams. 10th International Conference on AMCM. MATEC Web od Conf. Vol. 323. 2020.
  • [35] Szczech D., Kotynia R. Effect of shear reinforcement ratio on the shear capacity of GFRP reinforced concrete beams. Arch. of Civil Eng. 2021; Volume 67, Issue 1.
  • [36] Spadea S., Orr J., Nanni A., Yang Y. Wound FRP shear reinforcement for concrete structures. Jour. of Comp. for Constr. 2017; 21(5): 4017026.
  • [37] Fakharifar M., Dalvand A., Sharbatdar M.K., Chen G., Sneed L. “Innovative hybrid reinforcement constituting conventional longitudinal steel and FRP stirrups for improved seismic strength and ductility of RC structures”. Frontiers of Struc. and Civil Eng. 2016; 10 (1).
  • [38] Yuan Y., Wang Z. Shear behavior of large-scale concrete beams reinforced with CFRP bars and handmade strip stirrups. Comp. Struc. 2019; 227.
  • [39] Demir A., Caglar N., Ozturk H., Sumer Y. Nonlinear Finite Element Study on the Improvement of Shear Capacity in Reinforced Concrete T-Section Beams by an Alternative Diagonal Shear Reinforcement. Eng. Struc. 2016; 120: 158-165.
  • [40] Vijay P.V., Kumar S.V., Ganga Rao H.V.S. Shear and ductility behavior of concrete beams reinforced with GFRP rebars. Proc. of the 2nd Inter. Conf. on ACMBS-II, 1996.
  • [41] Shehata E., Morphy R., Rizkalla S. Fibre Reinforced Polymer Shear Reinforcement for Concrete Members: Behaviour and Design Guidelines. Can. Jour. of Civil Eng. 2000; 27: 859 - 872.
  • [42] Kotynia R., Szczech D., Kaszubska M. Bond Behavior of GRFP Bars to Concrete in Beam Test. Proc. Eng. 2017; 193: 401 - 408.
  • [43] Szczech D., Kotynia R. Beam bond test of GFRP and steel reinforcement to concrete. Arch. of Civil Eng. 2018; Vol. 64, Issue 4.
  • [44] Szczech D., Kotynia R. Badania przyczepności zbrojenia niemetalicznego do betonu. Inżynier Budownictwa. 2019; 75 nr 4: 176 - 180.
  • [45] Szczech D., Kotynia R. Bond analysis of GFRP and steel reinforcement to concrete. Fib 2019 Symp. – Concrete: Innovations in mat. design and struct. Kraków 2019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d7415a68-5381-493a-aa79-b2180531bb22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.