Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 72, no 1 | 17--44
Tytuł artykułu

A note on Łoś theorem without the Axiom of Choice

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study some topics around Łoś’s theorem without assuming the Axiom of Choice. We prove that Łoś’s fundamental theorem on ultraproducts is equivalent to a weak form that every ultrapower is elementarily equivalent to its source structure. On the other hand, it is consistent that there is a structure M and an ultrafilter U such that the ultrapower of M by U is elementarily equivalent to M, but the fundamental theorem for the ultrapower of M by U fails. We also show that weak fragments of the Axiom of Choice, such as the Countable Choice, do not follow from Łoś’s theorem, even assuming the existence of non-principal ultrafilters.
Wydawca

Rocznik
Strony
17--44
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555 Japan, usuba@waseda.jp
Bibliografia
  • [1] A. Blass, A model without ultrafilters, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 329–331.
  • [2] H.-D. Donder, Regularity of ultrafilters and the core model, Israel J. Math. 63 (1988), 289–322.
  • [3] Y. Hayut and A. Karagila, Spectra of uniformity, Comment. Math. Univ. Carolin. 60 (2019), 285–298.
  • [4] H. Herrlich, Axiom of Choice, Lecture Notes in Math. 1876, Springer, 2006.
  • [5] P. E. Howard, Łoś’ theorem and the Boolean prime ideal theorem imply the axiom of choice, Proc. Amer. Math. Soc. 49 (1975), 426–428.
  • [6] P. E. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., 1998.
  • [7] T. Jech, The Axiom of Choice, Stud. Logic Found. Math. 75, North-Holland, 1973.
  • [8] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory from Their Beginnings, 2nd ed., Springer, 2009.
  • [9] A. Karagila, Iterating symmetric extensions, J. Symbolic Logic 84 (2019), 123–159.
  • [10] J. Łoś, Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres, in: Mathematical Interpretation of Formal Systems, North-Holland, 1955, 98–113.
  • [11] D. Pincus and R. M. Solovay, Definability of measures and ultrafilters, J. Symbolic Logic 42 (1977), 179–190.
  • [12] M. Spector, Ultrapowers without the axiom of choice, J. Symbolic Logic 53 (1988), 1208–1219.
  • [13] E. Tachtsis, Łoś’s theorem and the axiom of choice, Math. Logic Quart. 65 (2019), 280–292.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d73c7f55-b858-40d6-8743-92f67635ae8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.