Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Natural language inference (NLI) is a central problem in natural language processing (NLP) of predicting the logical relationship between a pair of sentences. Lexical knowledge, which represents relations between words, is often important for solving NLI problems. This knowledge can be accessed by using an external knowledge base (KB), but this is limited to when such a resource is accessible. Instead of using a KB, we propose a simple architectural change for attention based models. We show that by adding a skip connection from the input to the attention layer we can utilize better the lexical knowledge already present in the pretrained word embeddings. Finally, we demonstrate that our strategy allows to use an external source of knowledge in a straightforward manner by incorporating a second word embedding space in the model.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
autor
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
autor
- Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland
Bibliografia
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d6b74b73-c882-4bea-b963-28e7446bc2da