Czasopismo
2009
|
Vol. 29, Fasc. 2
|
227--250
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Weighted quantile correlation tests are worked out for the Gumbel location and location-scale families. Our theoretical emphasis is on the determination of computable forms of the asymptotic distributions under the null hypotheses, which forms are based on the solution of an associated eigenvalue-eigenfunction problem. Suitable transformations then yield corresponding composite goodness-of-fit tests for the Weibull family with unknown shape and scale parameters and for the Pareto family with an unknown shape parameter. Simulations demonstrate slow convergence under the null hypotheses, and hence the inadequacy of the asymptotic critical points. Other rounds of extensive simulations illustrate the power of all three tests: Gumbel against the other extreme-value distributions, Weibull against gamma distributions, and Pareto against generalized Pareto distributions with logarithmic slow variation.
Czasopismo
Rocznik
Tom
Strony
227--250
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
- Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary, csorgo@math.u-szeged.hu
autor
- Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary, szbtmsz@math.u-szeged.hu
Bibliografia
- [1] A. Cabaña and A. J. Quiroz, Using the empirical moment generating function in testing for the Weibull and the Type I extreme value distribution, Test 13 (2005), pp. 417-431.
- [2] S. Csörgõ, Testing for Weibull scale families as a test case for Wasserstein correlation tests (Discussion of [7]), Test 9 (2000), pp. 54-70.
- [3] S. Csörgõ, Weighted correlation tests for scale families, Test 11 (2002), pp. 219-248.
- [4] S. Csörgõ, Weighted correlation tests for location-scale families, Math. Comput. Modelling 38 (2003), pp. 753-762.
- [5] S. Csörgõ and T. Szabó, Weighted correlation tests for gamma and lognormal families, Tatra Mt. Math. Publ. 26 (2003), pp. 337-356.
- [6] E. del Barrio, J. A. Cuesta-Albertos and C. Matrán, Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests (With discussion), Test 9 (2000), pp. 1-96.
- [7] E. del Barrio, J. A. Cuesta-Albertos, C. Matrán and J. M. Rodríguez-Rodríguez, Tests of goodness of fit based on the L2-Wasserstein distance, Ann. Statist. 27 (1999), pp. 1230-1239.
- [8] E. del Barrio, E. Giné and F. Utzet, Asymptotics for L2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances, Bernoulli 11 (2005), pp. 131-189.
- [9] T. de Wet, Discussion of [7], Test 9 (2000), pp. 74-79.
- [10] T. de Wet, Goodness-of-fit tests for location and scale families based on a weighted L2-Wasserstein distance measure, Test 11 (2002), pp. 89-107.
- [11] T. de Wet and J. Venter, A goodness of fit test for a scale parameter family of distributions, South African Statist. J. 7 (1973), pp. 35-46.
- [12] J. Jurečková and J. Picek, A class of tests on the tail index, Extremes 4 (2001), pp. 165-183.
- [13] É. Krauczi, A study of the quantile correlation test for normality, Test 16 (2009), to appear.
- [14] F. Marohn, Testing the Gumbel hypothesis via the pot-method, Extremes 1 (1998), pp. 191-213.
- [15] F. Marohn, Testing extreme value models, Extremes 3 (2000), pp. 363-384.
- [16] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Unger, New York 1955.
- [17] J. Segers and J. Teugels, Testing the Gumbel hypothesis by Galton’s ratio, Extremes 3 (2000), pp. 291-303.
- [18] G. Szegõ, Orthogonal Polynomials, Fourth Edition, Colloquium Publications XXIII, American Mathematical Society, Providence, Rhode Island, 1975.
Uwagi
In memoriam Professor Béla Gyires (1909–2001)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d69cdfd4-5475-4c6c-bd94-895363d3be72