Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 1 (224) | 68--79
Tytuł artykułu

Directions of development of the autonomous unmanned underwater vehicles. a review

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper review of unmanned underwater vehicle (AUV) is presented. The description of main systems is depicted with focus on autonomous single vehicle as well as a swarm. As a con-sequence of development of AUV technology, research centers are focused on issues related to increasing the degree of their autonomy. Nowadays, mostly navigation and communication as well as high-efficient propeller systems are being developed. There are problems linking this issues. Their solutions includes development of new control laws containing algorithms to pre-vent collisions - for unmanned vehicles with elements of the underwater environment and for several underwater vehicles cooperating with each other in a swarm.
Wydawca

Rocznik
Strony
68--79
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Polish Naval Academy, Faculty of Mechanical and Electrical Engineering, Śmidowicza 69 Str., 81-127 Gdynia, Poland, m.orlowski@amw.gdynia.pl
Bibliografia
  • [1] Christopher von Alt, Autonomous Underwater Vehicles, Woods Hole Oceanographic Institu-tion, 2003
  • [2] Simon Watson, Daniel A. Duecker, Keir Groves, Localisation of Unmanned Underwater Vehi-cles (UUVs) in Complex and Confined Environments: A Review, Sensors, 2020
  • [3] Jinyeong Heo, Junghoon Kim, Yongjin Kwon, Technology Development of Unmanned Un-derwater Vehicles (UUVs), Journal of Computer and Communications, 2017
  • [4] Yvan R. Petillot, Gianluca Antonelli, Giuseppe Casalino, Fausto Ferreira: Underwater Robots, From Remotely Operated Vehicles to Intervention-Autonomous Underwater Vehi-cles, IEEE Robot. Autom. Magazine, 2019
  • [5] David K.A. Barnes, Andrew Clarke, Antarctic marine biology, Current Biology, 2011
  • [6] Ronald O'Rourke, Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress, Congressional Research Service, 2020
  • [7] Ziye Zhou, Yanqing Jiang , Ye Li, Cao Jian, Yeyi Sun, A single acoustic beacon-based position-ing method for underwater mobile recovery of an AUV, International Journal of Advanced Robotic Systems, September-October 2018, pp. 1–10
  • [8] Guangchao Hou, Qi Shao, Bo Zou, Liwen Dai, Zhe Zhang, Zhehan Mu, Yadong Zhang, Jingsheng Zhai, A Novel Underwater Simultaneous Localization and Mapping Online Algo-rithm Based on Neural Network, International Journal od Geo-Information, 2020, pp. 2-5
  • [9] B. Pranitha, L. Anjaneyulu, Analysis of Underwater Acoustic Communication System Using Equalization Technique for ISI Reduction, Procedia Computer Science, No. 167, 2020, pp. 1128–1138
  • [10] B. Pranitha, L. Anjaneyulu, Research Trends in Underwater Communications - A Technical Survey, International Conference on Communication and Signal Processing, 2016
  • [11] Ian F. Akyildiz, Pu Wang, Zhi Sun, Realizing Underwater Communication through Magnetic Induction, IEEE Communication Magazine, 2015
  • [12] Paweł Piskur, Piotr Szymak, Zygmunt Kitowski, Leszek Flis, Influence of Fin’s Material Ca-pabilities on the Propulsion System of Biomimetic Underwater Vehicle, Polish Maritime Re-search, Vol. 27, No. 4, 2020, pp. 179-185
  • [13] Karolina Jurczyk, Paweł Piskur, Piotr Szymak, Parameters Identification of the Flexible Fin Kinematics Model Using Vision and Genetic Algorithms, Polish Maritime Research, Vol. 27, No. 2, 2020, pp. 39-47
  • [14] Paweł Piskur, Piotr Szymak, Leszek Flis, Joanna Sznajder, Analysis of a Fin Drag Force in a Biomimetic Underwater Vehicle, Naše More, Vol. 67, No. 3, 2020, pp. 192-198
  • [15] Paweł Piskur, Piotr Szymak, Krzysztof Jaskólski, Leszek Flis, Marek Gąsiorowski, Hydroa-coustic System in a Biomimetic Under-water Vehicle to Avoid Collision with Vessels with Low-Speed Propellers in a Controlled Environment, Sensors, 2020, 20, 968
  • [16] Tomasz Praczyk, Neural collision avoidance system for biomimetic autonomous underwa-ter vehicle, Soft Computing, No. 24, pp. 1315–1333
  • [17] Paweł Piskur, Marek Gąsiorowski, Digital Signal Processing for Hydroacoustic System in Biomimetic Underwater Vehicle, Naše More, Vol. 67, No. 1, 2020, pp. 14-18
  • [18] Tomasz Praczyk, Detection of Land in Marine Images, International Journal of Computa-tional Intelligence Systems, Vol. 12, No. 1, 2019, pp. 273–281
  • [19] Tomasz Praczyk, Using Neuro–Evolutionary Techniques to Tune Odometric Navigational System of Small Biomimetic Autonomous Underwater Vehicle – Preliminary Report, Journal of Intelligent & Robotic Systems, 2020, pp. 363–376
  • [20] Tomasz Praczyk, Piotr Szymak, Krzysztof Naus, Leszek Pietrukaniec, Stanisław Hożyń, re-port on research with biomimetic autonomous underwater vehicle — navigation and au-tono-mous operation, Scientific Journal of Polish Naval Academy, Vol. 2, 2018
  • [21] https://ieeexplore.ieee.org/
  • [22] http://www.swarms.eu/approach.html
  • [23] https://navalunderseamuseum.org/whitehead/
  • [24] https://www.boeing.com/resources/boeingdotcom/defense/autonomous-systems/echo-voyager/echo_voyager_product_sheet.pdf
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d6696dd3-6ecd-43cd-b0dd-8ebbd589a54c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.