Warianty tytułu
Prognozowanie zawartości gazów rozpuszczonych w oleju transformatorowym przy wykorzystaniu metody RVM – Optymalizacja Stadna Cząsteczek
Języki publikacji
Abstrakty
Forecasting of dissolved gases concentration in power transformer is very significant to detect incipient failures of transformer early and ensure hassle free operation of entire power system. A forecasting model based on Particle Swarm Optimization –Fast Relevance Vector Machine (PSO-FRVM) is proposed in this paper. PSO is utilized to optimize the free parameter of the Gaussian kernel function to improve the forecasting performance. The Matlab program testify the correctness and validity of the model.
W artykule przedstawiono metodę prognozowania rozpływu gazów w transformatorze elektrycznym, opartą na zbudowanym modelu. W tworzeniu modelu wykorzystano Optymalizację Stadną Cząsteczek z maszyną opartą na wektorach istotnych (ang. PSO-FRVM). Metoda PSO wykorzystana została do optymalizacji doboru parametru wolnego w funkcji jądra Gaussa dla polepszenia jakości prognozowania. Weryfikację przeprowadzono w programie Matlak.
Czasopismo
Rocznik
Tom
Strony
290--293
Opis fizyczny
Bibliogr. 15 poz., schem., tab.
Twórcy
autor
- Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), windgod0112@163.com
autor
- Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), lkjun@sdu.edu.cn
autor
- Laiwu Power Supply Company of Shandong Electric Power Corporation, zhaobaoguanglw@ sd.sgcc.com.cn
autor
- Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), zhaojianguo@sgtc.sgcc.com.cn
- State Grid of China Technology Colleague
autor
Bibliografia
- [1] Wang M. H., Hung C.P., Novel grey model for prediction of trend of dissolved gases in oil-filled power appratus, Electric Power Systems Research, 67 (2003), No. 1, 53-58
- [2] Wang W., Liu Y., Pedrycz W., A Two-Stage Online Prediction Method for a Blast Furnace Gas System and Its Application, IEEE Trans. on Control Systems Technology, 19 (2011), No. 3, 507-520
- [3] Elragal, H., Lu T.-L., Combination of artificial neural-network forecasters for prediction of natural gas consumption, IEEE Trans. on Neural Networks, 11(2000), No. 2, 464-473
- [4] Azadeh A, Ghaderi S. F., Sohrabkhani S., A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy, 36(2008), No. 7, 2637– 2644
- [5] Shengwei Fei, Mingjun Wang, Yubin Miao, et al, Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil. Energy Conversion and Management, 50(2009), 1604-1609
- [6] Shengwei Fei, YuSun, Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm, Electric Power Systems Research, 78(2008), 507-514
- [7] Michael E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1(2001), 211-244
- [8] Fereidoun A. Mianji, Ye Zhang, Robust Hyperspectral Classification Using Relevance Vector Machine, IEEE Trans. on Geosc. and Remote Sensing, 49(2011), No. 6, 2100-2112
- [9] Ioannis Psorakis, Theodoros Damoulas, Mark A., Multiclass Relevance Vector Machines: Sparsity and Accuracy, IEEE Trans. on Neural Networks, 21(2000), No. 10, 1588-1598
- [10] Liyang Wei, Yongyi Yang, Robert M. Nishikawa, et al. Relevance Vector Machine for Automatic Detection of Clustered Microcalcifications, IEEE Trans. on Medical Imaging, 24(2005), No. 10, 1278-1285
- [11] Michael E. Tipping, Anita Faul, Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. Proc. 9th Int. Workshop Artif. Intell. Statist., Key West, FL, 2003
- [12] Fernandez-Martinez, J.L., Garcia-Gonzalo E., Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models, IEEE Trans. on Evolutional Computing, 15(2011), No. 3, 405-423
- [13] Das Sharma, K.; Chatterjee, A.; Rakshit, A., A Random Spatial lbest PSO-Based Hybrid Strategy for Designing Adaptive Fuzzy Controllers for a Class of Nonlinear Systems, IEEE Trans. on Instrumentation and Measurement, 61(2012), No. 6, 1605-1612
- [14] Bo Liu, Ling Wang, Yihui Jin, An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 24(2007), No. 1, 18-27
- [15] Chia-Nan Ko; Ying-Pin Chang; Chia-Ju Wu, A PSO Method With Nonlinear Time-Varying Evolution for Optimal Design of Harmonic Filters, IEEE Trans. on Power Systems, 24(2009), No. 1, 437-444
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d65e8c2e-af8a-4d5a-8cb7-42a9fc444cec