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Landscape morphology analysis is still a topical problem of the up-to-date 
landscape science. Many researchers, including V.A. Nikolaev, L.I. Ivashutina, Yu.G. 
Simonov, V.M. Fridland, B.V. Vinogradov, N.V. Fadeeva, K.H.Ritters, R.V.O’Neill, K. 
McGarigal, B.J. Marks, and others (Ivashutina, Nikolaev, 1971; Simonov, 1970;  Frid-
land , 1972; Victorov, 1986; Riitters, O’Neill, Hunsaker a. o., 1995; Leitao A.B. et al. 
2006; Moser, Jaeger, Tappeiner et al. 2007; McGarigal, Cushman, Neel, et al., 2002, 
Pshenitchnikov, 2003,  and others), dealt with the quantitative analysis of landscape 
patterns.  

Various tasks such as analysis of RSD and landscape patterns, exogenous process 
prediction and risk assessment involve landscape morphology analysis. 

The researches devoted to the quantitative analysis of geometric features of mor-
phological patterns have resulted now in the separate scientific branch – mathema-
tical morphology of landscape (Victorov, 1998, 1992). 

The Mathematical Morphology of Landscape is a branch of the landscape science 
dealing with quantitative laws for the Earth surface mosaics, which are formed by 
natural units (bogs, aeolian ridges, etc.), and mathematical methods of their analysis. 
Hence, the named branch is aimed on the quantitative aspects of the landscape mor-
phology basing on its mathematical analysis. We can figuratively call it "the land-
scape geometry".   

One of the most important results of the mathematical morphology of landscape 
is a concept of mathematical models of landscape patterns. A mathematical model of 
a landscape pattern is a set of mathematical dependences reflecting most essential 
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geometric characteristics of a landscape.  The mathematical models are a core of the 
mathematical morphology of landscape. They appear to be an indivisible integral 
base for solving various tasks.  

The mathematical models of morphological patterns formed under a single pro-
cess in uniform geographical conditions play a special role of basic units. They are 
called canonical mathematical models of landscape patterns. The canonical models 
for number genetic types of territory are already developed now, including plains 
with karst processes, fluvial erosion and alluvial plains, and some others (Victorov, 
1998). Some new canonical models appeared recently, such as mathematical models 
for ridged and ridged cellular eolian plains (Victorov, Zaitzev, 2000). The theory of 
random process appeared to be the most successful base for developing the 
canonical models of morphological patterns. 

One can oppose the canonical mathematical models to the mathematical models 
of complicated morphological patterns, i.e. the landscape patterns formed under of  
a number of processes or (and) geomorphologic and geological heterogeneity. 
According to the combination of factors the mathematical models for complicated 
morphological patterns of the types I, II and III can be determined (Victorov, 2006). 

The mathematical model of the landscape pattern for plains under soil subsi-
dence processes is an example of canonical models. 

Plains affected by soil subsidence are the plains developing under soil subsi-
dence process. They are spread at different nature conditions including the south of 
the West Siberia, Kopet-Dag piedmont plain, Orsha-Mogilev plateau within the East 
European plain, Caspian lowland and others (fig. 1). 

Landscape pattern of the named plains under uniform geological and geomor-
phologic conditions consists of rather uniform and flat background sprinkled with 
subsidence plots representing soil subsidence. They are round holes without prevail-
ling orientation and aggregating into line systems. Nature conditions depend on 
climatic zone, material constitution of deposits, and other factors. The landscapes 
within the depressions are also determined by the same factors.  They can be motley 
grass - grasses meadows with black soil, desert vegetation on gray-brown desert soil, 
bogged depressions, and others. In spite of different soils and vegetation covers 
geometric features of the landscape pattern remains similar (fig. 1). 

Thus, the mathematical model of the landscape pattern under investigation treats 
it as a background with random circles corresponding to soil subsidence depres-
sions. The model is based on the following assumptions: 

• The occurrence of a new hole is a probabilistic process and within non-
overlapping areas is an event independent of other depression occurrences 



 106

•  The probability of depression occurrence is directly proportional to the time 
period ( t∆ ) and size of the area ( s∆ ) under study. The probability that two or more 
holes occur is negligibly small compared to the occurrence of only one depression: 
 

)(1 tsоtsp ∆∆+∆∆= λ    

...3,2)( =∆∆= ktsоpk ,                                                                                           (1) 

 
where λ  is a parameter.   

• The growth rate of a depression is directly proportional to it actual size. 
 

 
 
Fig.1. Typical image of plains under soil 
subsidence process in the south of West Siberia (a) 
and Kopet-Dag piedmont plain (b).   
 

These assumptions are natural. Depression occurrences resulting after substra-
tum changes are simultaneous and independent from each other in case of uniform 
nature conditions. Occurrence more then one depression within certain area is sub-
stantially rarer compared with appearance of a single site caused by soil subsidence. 
Growth rate of any depression is directly dependent on runoff concentration, which 
is determined by the actual size of the hole. This characteristic relation between 
runoff concentration and size of the hole is substantially independent on climatic, 
geological, and geomorphologic conditions of any area though the actual runoff and 
weathering parameters deepened on them.    

The mathematical analysis of the model assumptions enable us to draw uniquely 
(Victorov, 1998, 2006) the general equations of the landscape pattern model for plains 
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under soil subsidence process. Let us demonstrate the radii distribution density of 
subsidence holes as an example. 

Let us examine area change for a hole of soil subsidence genesis. The second 
assumption of the model causes proportional dependence of a generally random 
change of the hole radii during i section of time from the actual radii 

 

iii uu ξ=∆            (2) 
 

The proportional indices iξ  are random parameters resulting from atmospheric 

characteristics of every year such as precipitation, storm run-off, melting water 
volume and others. These indices are independent from year to year but they have 
got the same distribution, so we can get their mathematical expectation and variance 
as follows: 

,0aM i =ξ 2
0σξ =iD .  (3) 

 

By transposing the terms dealing with the hole size to the left, then summing and 
replacing of the left part with the integral we get 
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After integration we get 
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where x is a hole size at time t, 0x  is an initial hole size, which can be taken as 1 for 

simplification. In this case the expression becomes simpler  
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Taking into account the sum of a great number of independent summands on the 
left we get according to the central limit theorem the size logarithm as a random 
variable with normal distribution. The mathematical expectation of this variable and 
its variance grow lineally by time due to independence of the summands   
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Thus the radii distribution density of subsidence holes (and their area corre-
spondingly) after time t since the depression appearance is 
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where  00 ,σa  are parameters. 

Using the mathematical analysis we can easily get that the probability of k initial 
sites occurring within area s during time t  is described by (Victorov, 1998):  
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where v is the trial plot area, t is time, λ is the average number of sites appearing 
within a unit area per unit time.  

The research shows that the mathematical models of landscape patterns are 
characterized with an amazing feature. It is invariant (Victorov, 1998, 2006). This 
feature means that the model equations remain true for different areas of the same 
genetic type, i.e. areas developing under the same process. The form of the equations 
is the same, while specific conditions of every area, such as, deposits, rainfall, and so 
on, determine only the values of certain parameters of the equations.  

For example, one of the equations of the mathematical model for plains with soil 
subsidence (8 and 9) has the same form for different nature conditions. The chi-
square test for this distribution is given below (tab. 1, 2) 
 
Tab. 1. Comparison between actual and theoretical distribution of lognormal distributions for area of soil 
subsidence sites. 

Location of 
a testing region 

a  , 
average 

logarithm 
of depression 

σ , 
standard 

deviation for 
logarithm of  
depressions 

N  χ 2  2
99.0χ  

The south of West Siberia 12.685 0.734 78 1.329 9.210 

3,980 0,409 61 3.889 9.210 

1,294 0,522 59 2.469 9.210 
Russian plain 

(Byelorussia) 
0,153 0,635 52 4.163 9.210 

Kopet-Dag 

piedmont plain 
0.668 0.290 84 1.731 11.341 

The south of West Siberia 12.077 1.325 44 4.739 6.635 

Caspian lowland 4.537 0.955 34 0.763 9,210 
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Tab. 2. Comparison between actual and theoretical spatial distribution (Poisson Law) for soil subsidence 
sites.  
 

Location of a testing 
region 

Average spatial density  
of depressions 

N χ 2
 

2
99.0χ  

Caspian lowland 0.556 63 0.086 6.635 

Caspian lowland 0.548 62 0.056 6.635 

Caspian lowland 0.912 80 0.262 6.635 

1,654 130 0.494 13,277 

3.308 65 2.736 15,086 
Kopet-Dag 

piedmont plain 
1.720 100 1.858 11.341 

North Africa  (Algeria) 0.622 98 2.924 6.635 

Barabinskaya steppe 1.174 69 1.056 9,210 
 

 

The following general directions within the frames of the mathematical mor-
phology of landscape have given the most interesting results up to now: 

- natural risks assessment, 
- landscape metrics selection 
- analysis of natural dynamics,  
- new landscape laws, invariants 
- laws for age differentiation of natural units, 
- new software for RSD processing.  

The mathematical morphology of landscape has got important results solving the 
problem of natural risk assessment. The goal is to design the theory and predicting 
evaluation methods for probability and damage risk to an engineering construction 
by nature hazards. Though many works (Natural risk assessment and management, 
2003; Kolluru, Bartell, Pitblado, a. o., 1996 and etc.) are devoted to damage risk eva-
luation, the problem is still among topical ones. The difficulty is in the little know-
ledge about those peculiarities of the process, which allow us to estimate probability 
and damage values. The statistical approach needs too many observation data, and 
in this case the estimation loses it significance due to limited lifetime of engineering 
constructions.   

This problem can be solved for a wide spectrum of hazardous exogenous 
processes (karst, soil subsidence, thermokarst, etc) within the frames of the mathe-
matical morphology of landscape. The decision is based on the mathematical models 
of landscape patterns, the core of the mathematical morphology of landscape. 

Consider natural risk assessment for a thermokarst area as an example. Thermo-
karst plains with fluvial erosion are slight wavy subhorizontal areas covered by tundra 
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vegetation, interspersed with lakes and khasyreis (a khasyrei is a drained lake) and 
rather rare fluvial erosion network. The main parts of the region include (fig. 2):  

- flat tundra plain,  
- thermokarst lakes, 
- khasyreis, 
- fluvial erosion network.  

 

 
 

 

Fig. 2. Typical image of  thermokarst plains with fluvial erosion  in the north of West Siberia.   
 
 

Thermokarst, thermo-abrasion, and thermo-erosion processes perform in com-
plex interrelations and determine the type of the area.  

The assumptions of the model include (Victorov, 2001, 2005): 
1. Appearance of a thermokarst depression within every taken area is an occa-

sional event, which probability is directly proportional to the size of the area.  
2.  Radius of an initial thermokarst depression is a random variable with distri-

bution density   )(xϕ      . 

3.  Growth of an appeared thermokarst depression is a random variable; it is 
independent of other lakes and the growth rate is directly proportional to 
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heat storage in the lake water; it is inversely proportional to the total surface 
area of the water body.  

4.  Depth of a lake is in direct proportion to its diameter. 
5.  In the course of its growth, a lake can turn into a khasyrei after draining by 

the fluvial erosion network; probability of this does not depend on other 
lakes. If it happens the depression stops to grow. 

6.  Appearance of new fluvial erosion sources within an occasional area is  
a random quantity, which probability is directly proportional to the size of 
the area.  

Hence, using the described above model we can get impact probability for diffe-
rent types of constructions (Victorov, 2003, 2006): 
circular constructions (a cycle with radius I): 
 

)]]())()[(()]())()[((exp[1)( 2222 tltrttltrtlP hhhds σπγσπγ ++−++−−=    

   (10) 
 

linear constructions (with length L) 
 

])]()()()([2exp[1)( LtrttrtLP hhdl γγ +−−=      (11) 
 

small area (point) constructions  
 

)()()()(1)( tsttst
d

hhetP γγ −−−=       (12) 
 

where )(tγ , )(tr , )(tσ , )(),(),( ttrt hhh σγ  are average area density, average 

radius, and radius standard deviation for active thermokarst sites (lakes) and khasy-
reis respectively. 

The result of the analysis was tested empirically. A region of ancient thermokarst 
in Central Siberia is one of the testing areas. It is a flat tilled surface with slightly 
represented round depressions, which are distinctly revealed at air-borne photos.  
They are spread all over the area in disorder.  Their average area density, average ra-
dius and standard deviation are detected from the air-borne photos or maps and 
used in the equation (10) for round engineering constructions to estimate impact pro-
bability. Empirical values result from placing circles simulating engineering constru-
ctions of different size within the area according to a uniform grid and counting  
a number of impacts. 

The tab. 3. gives the comparison of the obtained theoretical and empirical values 
for the Central Siberia area with permissible distinctions 0,100 at significance level 0, 
95. All empirical values agree with the calculated.  
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Tab. 3. An Impact Probability for Round Constructions of Different Size (ancient thermokarst, Central 
Siberia). 
 

Dimension of 
construction 

Theoretical 
probability 

Empirical 
frequency 

Difference 
Permissible distinction 

at significance level  
0, 95. 

10 0,367 0,393 0,026 0,100 

20 0,477 0,505 0,028 0,100 

30 0,582 0,639 0,057 0,100 

40 0,677 0,75 0,073 0,100 

50 0,76 0,835 0,075 0,100 

60 0,826 0,882 0,056 0,100 

70 0,878 0,916 0,038 0,100 
 

 
Landscape metrics selection is among the most interesting problems in land-

scape science. 
Many researchers suggest for analysis quantitative parameters of landscape mo-

saics formed by natural units on the Earth surface. They are called landscape metrics 
(Ivashutina, Nikolaev, 1971; Victorov, 1986; Riitters, O’Neill, Hunsaker a. o., 1995; 
Jaeger, 2000). Landscape metrics can be used for different tasks. At the same time 
any case of landscape metrics application causes some general fundamental issues: 

• How could we optimize landscape metrics selection? 
• Does optimizing selection of landscape metrics depend on physiographical  

               conditions? 
• Does a limited set of metrics exist, which contains large majority of data 

               concerning other landscape metrics behaving ("complete set of landscape  
               pattern metrics")? 

The last issue a priori seems to be unsolvable.  
The mathematical models of landscape patterns is a base for optimizing selection 

of landscape metrics for a great variety of landscapes. Plains affected by soil subsi-
dence are taken as an example. General assumptions of the model were given above.   

Optimizing selection of metrics. Let the following set of rather common metrics 
is taken for quantitative  analysis of the landscape pattern for the plain under soil 
subsidence: 
Average spatial density of depressions  (Patch Density, class level calculation)

 
S

n
m =1 ,        (13) 

Variation coefficient for spatial density of depressions   
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0
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m nσ=         (14) 

Average area of a depression1 (mean patch size, class level calculation) 

n

q
m

n

i
i∑

== 1
3         (15) 

Area share taken by the depressions  

S

S
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4 =         (16) 

Average distance to the nearest center of a depression  

n
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m
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5         (17) 

where  n  is a number of holes within a plot of area S , 0n  is average number of ho-

les at the trial plot, nσ  is a standard deviation of hole number within the trial plot, 

1S  is total area taken by the holes within the plot, iq  is the area of  the depression (i), 

ir  is a distance between the center of depression (i) to the closest one. 

The question is, is this set of metrics suitable for joint use? 
 Let us consider the general expressions of the mathematical model of the 

landscape pattern for plains under soil subsidence process (8) and (9). We should 
express the given metrics by model parameters in order to find interrelations among 
them. 

The first metric is a number of holes within the unit area, 1 square km for in-
stance. According to the model a number of depressions within the plot is stochastic  
and at any time satisfies Poisson distribution: 

S
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e
k

S
kP γγ −=
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)(         (18) 

where γ  is average number of hole centers within the unit area at the given 

moment, S  is the plot area. 
It is natural that in our analysis we are interested not in statistic fluctuations but 

in real difference, which are reflected with average value (mathematical expectation). 
Taking into account the expression for the mathematical expectation of the para-
                                                           
1 Without taking into account hole fusions  
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meter distributed according the Poisson law  one can get an average number for 
depressions within the plot: 

.SnS γ=           (19) 
 

One can get the first metric by dividing the average number of the depressions 
within the plot on its area ( S ) 

γ=1m .         (20) 
 

The second metric is a ratio between the standard deviation of a number of 
depressions within the trial plot to their mathematical expectation. The trial plot is  
a circle of a unit area (1 square km for instance). As far as a  a number of depressions 
within the trial plot also satisfies the Poisson law (18), their standard deviation and 
expectation are given with the following expressions according the Poisson distri-
bution: 

γσ =n , γ=0n         (21) 
 

After dividing and simplifying we get the following relation for the second 
metric: 

γ
1

2 =m .         (22) 

 

The third metric is an average area for a depression 
µ=3m          (23) 

 

where µ  is the mathematical expectation of depression area. The holes are round, so 

the  area and radius logarithms are linear relate 

ii rq ln2lnln += π .       (24) 
 

It means that at any time the area of the depression has lognormal distribution 
after the radius with a little bit different from radius distribution parameters,  
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where σ,a  average logarithm and standard deviation of the logarithm of depress-

sion area at present. 
According to the well-known expression for mathematical expectation of logno-

rmal distribution (Koroljuk, Portenko, Skorokhod et al., 1985) it is related with the 
model parameters σ,a  by the following expression: 
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( )a+= 25.0exp σµ        (26) 
 

 

The share area of the depressions within the plot in question (the forth metric) is 
also connected with the model parameters.  This relationship can be find taking into 
account the fact that the share of area covered by the holes is a probability that  
a random point of the plot is affected by the soil subsidence process and hence 
appeared within any hole.  According the results of the risk assessment (Victorov, 
2003), this probability and also the forth metric is connected with the parameters of 
the landscape pattern by the following relation: 

 

)exp(14 µγ−−=m        (27) 
 

 

The fifth metric is an average distance from the center of the hole to the center of 
the nearest hole.  The distance distribution between centers of nearest depressions 
can be get using the following consideration (fig. 3).  

 

 
 

Fig.3. The illustration for derivation of the formula of 
average minimal distance between soil subsidence holes 
(explanation in the text).  

The probability that the mi-nimal 
distance between depressions ξ  

would not exceed the given value x  
is equal the probability that there is 
at least a single depression within the 
ring area between the boundary of 
the given hole of ra-dius u  and a cir-
cle of radius x . Thus we take into 
account that no depression can appe-
ar within the existing one. Basing on 
the Poisson distribution for centers of 
depressions this probability and hen-
ce the conditional distribution of the 
minimal distance are 

 
 

)](exp[1)( 22 uxuxF −−−= πγξ       (28) 

 
Hence the conditional expectation for the minimal distance is 

∫
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Using the Mills equation (Koroljuk, Portenko, Skorokhod et al., 1985) we obtain 
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where )(tФ is the Laplas function.  

First terms expansion in series by u  gives us approximate expression for the 
conditional mathematical expectation of the minimal distance 
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At least, after examining all possible radius values of the depression under 
consideration u , taking into account the whole set of possibilities (25) and 
integrating the resulted expression one can finally get the complete mathematical 
expectation corresponding the fifth metric of the landscape pattern  

µγ
γ 22

1
5 +=m .       (32) 

 

Thus, the mathematical analysis of the expressions corresponding to the metrics 
shows hidden independencies within the set of the metrics in question. 
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The obtained theoretical conclusion is illustrated at fig.4 and tables 4 and 5. They 
present theoretical and empirical values of the metrics for areas under different 
nature conditions. The theoretical values result from metrics 1m  and 2m  according 

to the above equations. The depression characteristics including area, center coordi-
nates, and dimensions were obtain by measuring at air-borne and space images. The 
empirical values of the forth metric were obtained using the analytical software 
package for the quantitative parameters of the landscape patterns designed in the 
Institute of Environmental Geoscience RAS by A.S. Victorov and A.A. Victorov. In 
majority of cases the data from the graph (fig.4) and tables prove the theoretically 
predicted interrelations among the metrics. 

It means that the set of metrics in question is not optimal because the second, 
forth and fifth metrics are non-informative because they related in  unobvious way 
with the first and third metrics and are under their control. 
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Fig. 4. Comparison of theoretical 
relations between metrics 

1m  

and 
2m with empirical data. 

 
 

 
 
 
 

Tab. 4. Comparison between theoretical dependence of 1m , 3m  and 4m  metrics and empirical data. 

Metric 4m  
Location of a testing 

region 

Metric 

1m , 

km-2 

Metric 

3m , 

km2 
Empirical 

value 
Theoretical 

(calculated) value 

Turgai table  land 0,111 0,820 0,106 0,087 

Caspian lowland 1388,889 0,000 0,209 0,188 

Barabinskaya steppe 0,899 0,307 0,198 0,241 

Caspian lowland 11,364 0,008 0,070 0,090 
Kopet-Dag 

piedmont plain 
81,439 0,001 0,053 0,073 

Russian plain 
(Byelorussia) 

148,448 0,002 0,250 0,224 

The south of West Siberia 0,272 0,434 0,093 0,111 
The south of West Siberia 0.364 0.354 0.053 0.129 

 

 

 

2m  

1m  
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Tab. 5. Comparison between theoretical dependence of 1m , 3m  and 5m  metrics and empirical data 

Metric 5m , m 
Location of a testing 

region 

Metric 

1m , 

km-2 

Metric 

3m , 

km2 
Empirical 

value 
Theoretical 

(calculated) value 
Russian plain (Byelorussia) 148.448 0.002 60 51 

Kopet-Dag 
piedmont plain 

81.439 0.001 68 60 

The south of West Siberia 0.364 0.355 1048 936 

The south of West Siberia 0.272 0.434 1152 1072 

 
Existence of the complete set of metrics. There is an infinite number of the me-

trics, which can be used  for landscape pattern analysis of the plains under soil 
subsidence process. Even if one takes the most  common metrics their number is very 
great. At the same time as it was shown above some metrics can be non-informative 
in case of mutual application and their mutual use is needless. The question is: does 
a limited set of metrics exist, which makes needless all other metrics? It is possible if 
the given landscape pattern has a limited set of the metrics, which controls all other 
possible metrics of the pattern.  In this case using the other metrics does not give new 
infor-mation because their values are determined by the metrics of the set.  

Hence this hypothetic set of metrics (let us call it "the complete set of metrics") 
contains the total information about the landscape pattern, for sure without taking 
into account statistical fluctuation. 

The analysis of the model of plains under soil subsidence predicts behavior of 
any quantitative characteristic of the landscape pattern. Actually any landscape me-
tric of the pattern under consideration (landscape pattern of plains under soil 
subsidence) use in the metric formulas only the following independent variables2:  

Numerical characteristics concerning  relative position of the sites (holes) and 
(or) 

Numerical characteristics concerning dimensions of the sites.  
It is not necessary to use the metrics, which describes shape of the sites because 

all the holes are cycles. 
But the first assumption of the model and the law of spatial distribution of soil 

subsidence holes give all the pattern features behavior describing relative position of 
the sites and allow us to find probability for any spatial arrangement of the sites. The 
second assumption and the law of radius distribution give all the pattern features 

                                                           
2 Here we do not consider the metrics using additional data such as classification distance (Николаев; 
Викторов). 
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behavior describing the site dimensions, such as area, diameter, perimeter of the 
holes and others.  It means that assuming the model about independence of growth 
and location of the sites it is possible to predict metric values using the mathematical 
model of landscape pattern. 

For example, let us examine the widely used metric, the average area of sites 
(mean patch size, landscape level calculation) 

m6

S
m = ,         (34)

  
where m is total number of sites. 
Let us find this metric as the mathematical expectation of the value. Assuming 

the Poisson law for a number of holes distribution  and  that the total number of sites 
within the area in question is greater by one at the expense of background area as 
additional site one can get the equation 
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Factoring out from the summation sign and assuming that the obtained series 

differ from exponent expansion by one after simplifying we get 
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1

6
Sem γ

γ
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The number of examples can be increased but it is clear from the demonstrated 
statements that the assumptions of the model are sufficient for behavior prediction of 
any characteristic of the pattern. At the same time some of the obtained expressions 
are simple, the other ones cannot be simplified but the relation between the model 
and the metric remains in any case.  

But the assumptions and main equations of the model use only three parameters. 
It means that any metric of the landscape pattern of the plains under soil subsidence 
process is determined only by these three parameters of the model γσ ,,a . Hence 

we demonstrated existence of the finite set of quantitative parameters, which can ex-
press any metric of the landscape pattern under consideration. It means the above 
parameters of the model form the hypothetical complete set of metrics, which is dealt 
in the issue. They are 

γ  is average spatial density of soil subsidence depressions (holes), 

 a  is average logarithm of depression area, 
σ - is standard deviation for logarithm of  depressions. 
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The fulfilled study allows us to make the following conclusions: 
1. The  optimizing selection of landscape metrics for different purposes can be 

done theoretically using the mathematical models of landscape patterns.  
2. The optimizing decisions are common for areas of the same genetic type under 

wide spectrum of nature conditions; it results from generality of the mathematical 
model of the landscape patterns. 

3. There are the finite sets of metrics, i.e. a  low number of metrics determining all 
other metrics accurate to statistic fluctuations. 

The approach evolved by the mathematical morphology of landscape patterns 
gives techniques for predicting processes development in very important practical 
tasks.  At the same time one of the most interesting results concerns environment 
dynamics during long period. It is especially important because every researcher 
usually deals with old nature processes. In this case three variants of process 
development are of special interest: 

1. The process unlimitedly develops (either increases or decreases), 
2. The process once reaches a certain stationary state, 
3. The process turns into continuous waving one. 

Determining process development as the second type is very efficient because in 
this case description of the process behavior can be essentially simplified and in turn 
the predicting procedure becomes simpler.   

Consider analytical capabilities of the model for process dynamics with long time 
of development taking as an example thermokarst plains with fluvial erosion. The 
main assumptions of the model are described above. 

Thus, the territory can be regarded as a certain flow of developing sites of the 
thermokarst process. Every site appears at a random moment independently from 
each other, enlarges under influence of different factors including random ones and 
finally reaches a critical value at a random moment and comes to the stage of dege-
nerate sites.  

Every thermokarst depression passes through the following stages: 
 1. Origin of depressions 
2. These depressions are filled up with water as lakes and increase in size 

independently of each other due to thermo-abrasion process. 
3. Occasionally any lake can be drained due to erosion process and turn to  

a khasyrei. Size increasing stops. 
The mathematical analysis of the model gives the main equations describing 

thermokarst developing (Victorov, 2001, 2006). They are: 
The Distribution of a number of thermokarst depressions which originated for 

time t  at a site s  
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The growth of lake radii can be considered as a Markov random process with 
transition probabilities 
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The radius distribution density for a thermokarst lake since a period t after its 

appearance (for simplifying the model let us take a unit radius for originated initial 
thermokarst depressions).  
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where )(tη is a distribution density for active thermokarst sites at moment t, σ,a - 

parameters. 
The analysis of the model assumptions gives us essential conclusions concerning 

the developing process, particularly, after a long period of development. In this very 
case it possible to show that under rather general conditions ((Victorov, 2003, 2006) 
the territory in question reaches a certain state close to stationary one with character-
ristics of dynamic balance. Thus, after a long period of development a number of 
quantitative characteristics become stable: 

- process impact ( *
dP ) , share of area affected by the dangerous process 

[ ] [ ]IPP dd
** 11ln −−=− λπ ,       (41) 

 

- radii distribution for the active sites 
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- average area density of the active sites 
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- radii distribution for the for khasyreis 
2
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In other words, new active sites of thermokarst processes continuously appear 
and disappear within the observed area, their dimensions change, new degenerate 
sites appear but the main quantitative statistic characteristics, such as area density of 
the active sites, the dimensions of degenerate and active sites remain stable. 
Therefore, the mathematical morphology of landscape gives us analytical prediction 
of the area dynamic state after a long time of development. 

Age differentiation laws for natural units are one more interesting result of the 
mathematical morphology of landscape. The landscape age differentiation analysis 
shows obligatory determination of two types of differentiation: 

• Macro age differentiation 
• Micro age differentiation. 

The macro age differentiation has started since the beginning of the landscape 
differentiation of the whole territory. It is characterized with rather simultaneous 
beginning of development of natural units within large territories. Their age can be 
defined as macro-age. Age differentiation caused by successive glacial or marine re-
cession can be taken as an example.  

The micro age differentiation is caused by asynchronous start of different natural 
units of the same type within the even macro-age area. One can take as an example 
age differentiation of soil subsidence depressions, appeared at different time within  
a uniform plain. This type of age differentiation is more usual for small natural units, 
such as facie, stow, and complex stow.  

The micro age differentiation reflects the fact that natural units of the same type, 
which origin resulted from developing nature processes forming corresponding 
landscape pattern of the area, exist different time and, hence, their soil and vege-
tation covers, local ground waters, and  permafrost conditions developed during 
different time in every case. So, in spite of their common genesis they cannot be re-
garded as totally similar. 
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For example, separate khasyreis (drained thermokarst lakes) are characterized 
with different micro-age if they appeared in different time and, thus, their soil and 
vegetation covers as well as new permafrost developed here for different time. 
Another example of micro age differentiation deals with micro depressions of Cas-
pian Lowland. Time of vegetation and soil development varies from one depression 
to another one, processes resulting in under depression water lenses and solonetz 
edges have also different duration.  

The mathematical morphology of landscapes has got results about quantitative 
laws of micro age differentiation for a number of genetic types of territory. It was 
found out that large areas appeared to be a sort of “patchwork” formed by adjacent 
nature units differed by their age.  

The micro age differentiation of alluvial plains was examined, for instance. Land-
scape pattern of an alluvial plain is formed by alternation of ridges and interridge 
depressions with corresponding soil and vegetation covers. The ridges and depres-
sions appear as a result of meander development and river-channel straightening 
(fig. 5). Let time period between 2 successive straightenings be a cycle of meander 
development (meandering cycle), while a set of nature units based on ridges and de-
pressions appeared during a cycle is a package. It is obvious that ridges’ age within  
a package uniformly changes according to their contiguous alternation from the 
starting to the enclosing arcs of a single package. As straightenings repeat from time 
to time every younger package razes either a part or the whole previous one. Several 
contiguous packages can be razed, so we call the corresponding cycles razed cycles.  

Total or partial razing depends on ratio between meandering cycle durations. If 
younger cycle was longer than the older one, only part of the package is razed, and  
a fragment of the package remains3. In other case the whole package is razed. Those 
cycles, which are represented with unerased fragments of packages forming the 
landscape pattern of the plain, are called represented cycles.  

Let us call the number of a represented cycle from younger to older “the order of 
a cycle”. 

Hence, in general two contiguous fragments of packages do not directly follow 
for each other in time but are separated by a certain time interval. One can regard 
an alluvial plain as a set of multiple-aged fragments of packages, which origins are 
separated by a certain time interval from each other. The detail analysis shows that 
within a plot corresponding to a single meander the fragments are separated in time 
equal to a sum of erased package durations with that of erased part of the later 

                                                           
3 It is supposed that alluvial processes remain stable during the investigated period, including stable rate 
of package growth. 
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package, represented by the unerased fragment. This very compound process results 
in micro age differentiation of alluvial plains. 

 

 
 

 

Fig. 5. Typical image of an alluvial plain landscape pattern at RSD.  

 
The mathematical model of the alluvial plain morphological pattern (Victorov, 

1998, 2006) can be a base for the revealing the micro age differentiation. The follow-
ing assumptions of the model are sufficient for the analysis: 

• river-channel straightenings are independent from each other and 
• straightening probability for a small time interval t∆  is straightly pro- 

           portional to the interval value and much greater than a probability of one 
           more straightening.  

The mathematical analysis gives the following main laws of micro age differ-
rentiation for alluvial plains (Victorov, 2007):  

• duration distribution for represented meandering cycles obeys gamma distri- 
           bution 
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• distribution of a number of erased cycles between contiguous represented  
            meandering cycles corresponds to geometrical distribution and depends on  
            a cycle order 
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• an average number of erased cycles between two represented cycles make 
           a  sequence common to different alluvial plains 
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• duration distribution for forming unerased package fragment corresponds to  
            exponential distribution 
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• average length of  time intervals dividing packages of contiguous orders 
            obeys the equation 
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where k is a cycle order, λ  - is a parameter inverse to average duration of cycles.   
The obtained results allow us to determine a concept of a landscape age spec-

trum for alluvial plains.  
When the channel is stable and development results only from meander growth 

and channel straightening, the channel is a generator of ridges and depressions pac-
kages. As a result a series of the represented package fragments of a certain age 
sequence (generation) appears. According to the given above laws these fragments 
are divided with rather definite time intervals, depending on groups of erased cycles 
first of all. These series of time intervals dividing represented fragments package of 
contiguous orders, which change according the package order, can be called age 
spectrum of a landscape for alluvial plains.  

Thermokarst plains with fluvial erosion are characterized with their own micro 
age differentiation resulting from draining thermokarst lakes and hence their turn 
into khasyreis due to fluvial erosion ((Victorov, 2006). It is possible to show that after 
a long period of development under diffuse processes a landscape appear to be  
a “patchwork” of  multiage segments  (micro age differentiation). Age distribution of 
segments corresponds to exponential distribution with a shift 

bayeyF −−−= 1)(τ ,       (50) 
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where a  and b  are parameters.  
Therefore, the mathematical morphology of landscape gives new approaches in 

researching age differentiation of landscapes.   
In general the up-to-date state of the mathematical morphology of landscape 

allows us to state that the obtained results can be regarded as new steps in decision 
differrent tasks of landscape science. The mathematical models of landscape pa-
tterns are a common base for the tasks. 

Hence, the mathematical morphology of landscapes is a perspective way for sol-
ving various tasks basing on the mathematical analysis. The mathematical models of 
landscape patterns is the theoretical basis for these decisions.  
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SUMMARY 

The paper discusses the mathematical morphology of landscape, which is  
a branch of the landscape science dealing with quantitative laws for the Earth surface 
mosaics, formed by natural units (bogs, aeolian ridges, karst, etc.), and mathematical 
methods of their analysis. The mathematical models are a core of the mathematical 
morphology of landscape. A mathematical model of a landscape pattern is a set of ma- 
thematical dependences reflecting most essential geometric characteristics of a land-
scape. The theory of random processes is a base for the mathematical models of mor-
phological patterns. They appear to be an indivisible integral base for solving va-
rious tasks. The landscape researches, which deal with landscape metrics, new land-
scape laws, risk assessment, and development dynamics, are in need of the quantita-
tive analysis of spatial landscape patterns.   
 
 
 




