Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 33, No. 4 | 841--846
Tytuł artykułu

Synthesis of multicomponent metallic layers during impulse plasma deposition

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pulsed plasma in the impulse plasma deposition (IPD) synthesis is generated in a coaxial accelerator by strong periodic electrical pulses, and it is distributed in a form of energetic plasma packets. A nearly complete ionization of gas, in these conditions of plasma generation, favors the nucleation of new phase of ions and synthesis of metastable materials in a form of coatings which are characterized by amorphous and/or nanocrystalline structure. In this work, the Fe-Cu alloy, which is immiscible in the state of equilibrium, was selected as a model system to study the possibility of formation of a non-equilibrium phase during the IPD synthesis. Structural characterization of the layers was done by means of X-ray diffraction and conversion-electron Mossbauer spectroscopy. It was found that supersaturated solid solutions were created as a result of mixing and/or alloying effects between the layer components delivered to the substrate independently and separately in time. Therefore, the solubility in the Fe-Cu system was largely extended in relation to the equilibrium conditions, as described by the equilibrium phase diagram in the solid state.
Wydawca

Rocznik
Strony
841--846
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
  • Material Physics Department, National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock-Swierk, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Bibliografia
  • [1] Zdunek K., Surf. Coat. Tech., 201 (2007), 4813.
  • [2] Zdunek K., J. Mater. Sci., 26 (1991), 4433.
  • [3] Nowakowska-Langier K., Zdunek K., Kopcewicz M., Vacuum, 78 (2) (2005), 423.
  • [4] Kashchiew D., J. Cryst. Growth, 13 – 14 (1972), 128.
  • [5] Rusanow A., J. Colloid Inter. Sci., 68 (1972), 32.
  • [6] Sokolowska A., Zdunek K., Grigoriew H., Romanowski Z., J. Mater. Sci., 21 (1986), 763.
  • [7] Zdunek K., Vacuum, 47 (1996), 1437.
  • [8] Nowakowska-Langier K., Zdunek K., Wierzbinski E., Surf. Coat. Tech., 204 (2010), 2564.
  • [9] Nowakowska-Langier K., Zdunek K, Plasma Process. Polym., 6 (2009), S826.
  • [10] Nowakowska-Langier K., Chodun R., Nietubyc R., Minikayev R., Zdunek K., Appl. Surf. Sci., 275 (2013), 14.
  • [11] Massalski T.B., Binary Alloy Phase Diagrams, 2nd Edition, ASM International, Metals Park, Ohio, 1991.
  • [12] Turchanin M.A., Agraval P.G., Nikolaenko I.V., J. Phase Equil. Diff., 24 (2003), 307.
  • [13] Koziel T., Kedzierski Z., Zielinska-Lipiec A., Ziewie K., Scripta Mater., 54 (2006), 1991.
  • [14] Qi M., Zhu M., Yang D.Z., J. Mater. Sci. Lett., 13 (1994), 966.
  • [15] Jiang J.Z., Gente C., Bormann R., Mat. Sci. Eng. A-Struct., 242 (1998), 268.
  • [16] Ueda Y., Ikeda S., Mori Y., Zaman H., Mat. Sci. Eng. A-Struct., 217 – 218 (1996), 371.
  • [17] Umut S., Celalettin Baykul M., Adv. Mater. Sci. Eng., 2013 (2013), 1.
  • [18] Almasi-Kashi M., Ramazani A., Kheyri F., Jafari-Khamse E., Mater. Chem. Phys., 144 (2014), 230.
  • [19] Kneller E.F., J. Appl. Phys., 35 (1964), 2210.
  • [20] Sumiyama K., Yoshitake T., Nakamura Y., Acta Metall. Sin., 33 (1985), 1785.
  • [21] Sumiyama K., Nakamura Y., J. Magn. Magn. Mater., 35 (1983), 219.
  • [22] Chen Y., Liu Y., Sun C., Yu K.Y., Song M., Wang H., Zhang X., Acta Mater., 60 (2012), 6312.
  • [23] Uenishi K., Kobayashi K.F., Nasu S., Hatano H., Ishihara K.N., Shingu P.H., Z. Metallkd., 83 (1992), 132.
  • [24] Yavari A.R., Desre P.J., Benameur T., Benameur, Phys. Rev. Lett., 68 (1992), 2235.
  • [25] Majumdar B., Manivel R.M., Narayanasamy A., Chattopadhyay K., J. Alloy. Compd., 248 (1997), 192.
  • [26] Ma E., Prog. Mater. Sci., 50 (2005), 413.
  • [27] Zhang S., Gong H., Gao N., Wang Z., Li G., Comp. Mater. Sci., 85 (2014), 230.
  • [28] Zhang S., Gong H., Chen X., Li G., Wang Z., Appl. Surf. Sci., 314 (2014), 433.
  • [29] Gong H., Lu W., Wang L., Li G., Zhang S., Comp. Mater. Sci., 65 (2012), 230.
  • [30] Cattaneo D., Foglio S., Casari C.S., Li Bassi A., Passoni M., Bottani C.E., Surf. Sci., 601 (2007), 1892.
  • [31] Childress J.R., Chien C.L., Phys. Rev. B, 43 (1991), 8089.
  • [32] Crespo P., Hernando A., Escorial G.A., Phys. Rev. B, 49 (1994), 3227.
  • [33] Crespo P., Hernando A., Yavari R., Drbohlav O., Escorial G.A., Phys. Rev. B, 48 (1993), 7134.
  • [34] Nowakowska-Langier K., Zdunek K., Lucinski T., Surf. Coat. Tech., 9 – 11 (2007), 5333.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d629062e-9c68-4e56-b8f5-11f8556173bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.